时间序列学习(2)——【循环神经网络基本原理】

本文介绍了如何使用GloVe词向量进行文本情感分析,通过将单词转化为词向量并输入线性层预测好评或差评。然而,模型存在处理长文本困难及忽略上下文信息的问题。为解决这些问题,提出了权值共享和引入consistent memory的需求,以更好地处理文本序列和捕捉上下文信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 介绍一个简单的案例

  • 淘宝处理好评还是差评

在这里插入图片描述

1.1 主要思想

  • 在此之前,我们已经在 时间序列学习(1) 的学习中,掌握了用GloVe来把单词转换成一个100d的词向量。

  • 那么: I hate this boring movie. 就可以转化为 [5, 100] 的词向量。

  • 对于每个100d的向量(也就是每一个单词), 作为x输入,传入到一个线性层中。 同理,5个词向量都传入 5个线性层,每个线性层的输出是 [2]\

  • 那么5个线性层的合并输出就是 [5, 2], 最后经过一个线性层,输出[1], 表示这个句子是好评 还是差评。

1.2 模型缺点

  1. 实际生活中,会存在很大的一段影评,这种长句子的处理非常困难。 [w, b]太大了。
  2. 忽略了上下文的语义信息。 —— 需要一个consistent tensor

1.3 提出需求

  1. 首先是权值共享, 把线性层的参数统一,从 w 1 , w 2 , w 3 w_1, w_2, w_3 w1,w2,w3 等等 变成统一的 w 、 b w、b wb
    在这里插入图片描述
  2. 需要一个consistent memory,需要能够贯穿整个单元

在这里插入图片描述

  • 求解梯度,这个部分比较复杂,我跳过了
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值