日志异常检测未来方向

这篇博客探讨了在构建自定义语料库时如何结合原有数据,以及应对日志数据不平衡和标签稀少的问题。同时,文章指出深度学习模型在处理新日志和跨域异常检测时面临的泛化能力不足,并讨论了训练时间过长的挑战。此外,无监督学习方法在准确率上的局限性也是本文关注的重点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 自建语料库、和原本语料库结合

2. 日志数据不平衡问题、标签少

3. 对新日志、未出现过的异常的泛化能力较差(不同域)

4. 深度学习模型训练时间长

5. 无监督准确率低

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李逍遥~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值