弹性之舞 - 自动伸缩 HPA、VPA 与 Cluster Autoscaler 详解
想象一下经营一家餐厅:如果总是按照最大客流量来配备厨师和服务员(静态资源配置),那么在客人少的时候就会有大量人力闲置浪费。反之,如果人手不足,高峰期客人就会等待过久,体验下降。理想的餐厅经理(自动伸缩机制)应该能根据客流量自动增减人手,甚至在长期爆满时考虑扩建餐厅(增加节点)。
Kubernetes 的自动伸缩就是为了解决类似的资源匹配问题。
1. Pod 水平自动伸缩:Horizontal Pod Autoscaler (HPA)
- 作用: HPA 根据观察到的指标(最常见的是 CPU 或内存使用率,也可以是自定义指标)自动增加或减少 Deployment、ReplicaSet 或 StatefulSet 中 Pod 的副本数量。
- 工作原理 (简化版):
- HPA 控制器定期从 Metrics Server(针对 CPU/内存)或自定义/外部指标 API 获取目标工作负载下所有 Pod 的指标数据。
- 将当前指标的平均值(或原始值,取决于目标类型)与 HPA 配置中设定的目标值进行比较。
- 根据比较结果,计算出期望的 Pod 副本数量(例如,如果当前 CPU 平均利用率是 80%,目标是 50%,HPA 可能会尝试增加副本数来降低平均利用率)。
- HPA 更新目标工作负载(如 Deployment)的
.spec.replicas
字段。Deployment Controller 接着会调整实际的 Pod 数量。
- 指标来源:
- 资源指标 (Resource Metrics):最常用的是基于 Pod 的平均 CPU 利用率 (
target.type: Utilization
) 或平均内存使用量 (target.type: AverageValue
)。这需要集群中安装 Metrics Server 组件。 - 自定义指标 (Custom Metrics):基于应用程序自身暴露的、更能反映业务负载的指标(例如,每秒处理的队列任务数、每个 Pod 的活跃用户数)。通常需要通过 Prometheus Adapter 或其他自定义指标 API 服务器将这些指标暴露给 HPA。
- 外部指标 (External Metrics):基于集群外部系统的指标(例如,云消息队列中的消息数量、外部负载均衡器的 QPS)。
- 资源指标 (Resource Metrics):最常用的是基于 Pod 的平均 CPU 利用率 (
- 配置示例 (HPA YAML):
apiVersion: autoscaling/v2 # 推荐使用 v2 或 v2beta2,功能更全 kind: HorizontalPodAutoscaler metadata: name: my-app-hpa namespace: my-app-namespace spec: scaleTargetRef: