弹性之舞 - 自动伸缩 HPA、VPA 与 Cluster Autoscaler 详解

弹性之舞 - 自动伸缩 HPA、VPA 与 Cluster Autoscaler 详解


想象一下经营一家餐厅:如果总是按照最大客流量来配备厨师和服务员(静态资源配置),那么在客人少的时候就会有大量人力闲置浪费。反之,如果人手不足,高峰期客人就会等待过久,体验下降。理想的餐厅经理(自动伸缩机制)应该能根据客流量自动增减人手,甚至在长期爆满时考虑扩建餐厅(增加节点)。

Kubernetes 的自动伸缩就是为了解决类似的资源匹配问题。

1. Pod 水平自动伸缩:Horizontal Pod Autoscaler (HPA)

  • 作用: HPA 根据观察到的指标(最常见的是 CPU 或内存使用率,也可以是自定义指标)自动增加或减少 Deployment、ReplicaSet 或 StatefulSet 中 Pod 的副本数量
  • 工作原理 (简化版):
    1. HPA 控制器定期从 Metrics Server(针对 CPU/内存)或自定义/外部指标 API 获取目标工作负载下所有 Pod 的指标数据。
    2. 将当前指标的平均值(或原始值,取决于目标类型)与 HPA 配置中设定的目标值进行比较。
    3. 根据比较结果,计算出期望的 Pod 副本数量(例如,如果当前 CPU 平均利用率是 80%,目标是 50%,HPA 可能会尝试增加副本数来降低平均利用率)。
    4. HPA 更新目标工作负载(如 Deployment)的 .spec.replicas 字段。Deployment Controller 接着会调整实际的 Pod 数量。
  • 指标来源:
    • 资源指标 (Resource Metrics):最常用的是基于 Pod 的平均 CPU 利用率 (target.type: Utilization) 或平均内存使用量 (target.type: AverageValue)。这需要集群中安装 Metrics Server 组件
    • 自定义指标 (Custom Metrics):基于应用程序自身暴露的、更能反映业务负载的指标(例如,每秒处理的队列任务数、每个 Pod 的活跃用户数)。通常需要通过 Prometheus Adapter 或其他自定义指标 API 服务器将这些指标暴露给 HPA。
    • 外部指标 (External Metrics):基于集群外部系统的指标(例如,云消息队列中的消息数量、外部负载均衡器的 QPS)。
  • 配置示例 (HPA YAML):
    apiVersion: autoscaling/v2 # 推荐使用 v2 或 v2beta2,功能更全
    kind: HorizontalPodAutoscaler
    metadata:
      name: my-app-hpa
      namespace: my-app-namespace
    spec:
      scaleTargetRef: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_42587823

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值