Tableau实战案例集:数据探索与洞察挖掘工具

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本书详细介绍了Tableau的强大数据可视化与分析功能,通过丰富的实际案例表格,帮助读者深入理解并实践Tableau的各项技能。它涵盖了从数据连接、清洗、建模,到创建计算字段、可视化设计、交互式仪表板以及故事叙述等全方位的数据分析流程。本书还强调了性能优化和使用参数过滤器增强分析动态性的重要性,以培养读者解决实际问题的能力,促进在数据分析领域的专业成长。 《触手可及的大数据分析工具:Tableau案例集》数据源-案例表格等

1. Tableau数据可视化和分析工具介绍

Tableau是商业智能领域中使用广泛的数据可视化和分析工具,它通过直观的图形界面帮助用户快速从数据中获得洞察。本章旨在为读者提供Tableau工具的概览,介绍它的核心特性和优势,以及如何利用Tableau进行高效的数据探索和分析。

1.1 Tableau的核心功能

Tableau的核心功能包括数据连接、数据处理、分析以及可视化。它支持多种数据源,如关系型数据库、云数据服务和本地文件。Tableau能够将复杂的数据转换成易于理解的图表和报告,使得非技术背景的用户也能轻松进行数据分析。

1.2 Tableau的优势和应用场景

Tableau的优势在于它的易用性和强大的数据可视化能力。它适合于各种规模的企业使用,尤其是在需要快速分析和报告生成的场景中,比如销售分析、市场研究和运营监控。用户通过简单的拖放操作即可生成交互式的图表和仪表板。

通过本章内容,读者将获得对Tableau工具的基本认识,为深入学习后续章节打下坚实的基础。接下来,我们将深入探讨如何在Tableau中建立数据连接,并对数据进行管理。

2. Tableau数据连接操作与案例分析

2.1 数据源的连接与管理

2.1.1 支持的数据源类型

Tableau 是一种领先的数据可视化工具,它支持多种类型的数据源,从而满足企业和个人对不同类型数据分析的需求。以下列出 Tableau 支持的数据源类型:

  • 关系型数据源 :包括 SQL Server、Oracle、MySQL、PostgreSQL、Amazon Redshift 等数据库。
  • 云数据源 :包括 Salesforce、Google Analytics、Amazon Athena、Snowflake 等云服务。
  • 桌面数据源 :如 Microsoft Excel、Access、文本文件、PDF 文件等。
  • 多维数据源 :例如 Microsoft Analysis Services 和 OLAP 多维数据源。
  • 其他数据源 :如 REST API、JSON、XML 等。

了解这些数据源类型能够帮助用户根据自身需求,选择最合适的连接方式,获取所需数据。

2.1.2 连接本地与云端数据

在 Tableau 中连接本地和云端数据是数据分析的重要步骤。无论是本地数据库还是云服务,Tableau 都提供了相应的连接器。

连接本地数据时,用户通常需要指定数据源的位置,例如文件路径或者数据库服务器的地址。而对于云端数据,Tableau 可以通过互联网直接连接到托管数据的云服务。

在实际操作中,首先打开 Tableau Desktop,然后选择“数据”菜单中的“新建数据源”,在弹出的窗口中选择相应的连接器并输入必要的认证信息,比如服务器地址、用户名和密码。连接成功后,Tableau 会加载数据源的结构信息,用户可以在 Tableau 中进行数据查询和分析。

2.1.3 数据连接的案例分析

为了更好地理解如何连接数据,以下是一个使用 Tableau 连接本地 Excel 数据文件的案例:

  1. 启动 Tableau 并选择数据源 : 打开 Tableau Desktop,点击界面右侧的“数据”按钮。

  2. 添加数据源 : 在“数据”页面中,选择“更多”并找到“Microsoft Excel”,单击以连接到 Excel 文件。

  3. 选择数据文件 : 在弹出的窗口中,浏览并选择需要分析的 Excel 文件。

  4. 数据预览与导入 : Tableau 会显示 Excel 文件的数据预览,用户可以查看数据是否正确导入。在此步骤中,还可以选择只导入特定的工作表或数据范围。

  5. 查看数据 : 成功连接数据后,用户将看到一个类似 Excel 的数据界面,可以在此基础上进行进一步的数据处理和分析。

通过这个案例,用户可以清楚地了解在 Tableau 中进行数据连接的流程。掌握这些基础知识后,用户可以根据不同需求,选择和连接各种数据源,为后续的数据分析和可视化打下坚实的基础。

graph LR
A[启动 Tableau] --> B[选择数据源]
B --> C[添加数据源]
C --> D[选择 Excel 数据文件]
D --> E[预览与导入数据]
E --> F[查看和处理数据]

2.2 数据导入过程与技巧

2.2.1 数据导入的步骤

在 Tableau 中,数据导入是数据分析的第一步,也是至关重要的一步。具体地,数据导入的步骤可以被拆解为以下几个关键环节:

  1. 打开数据源 :启动 Tableau,点击“数据”菜单并选择“新建数据源”。
  2. 选择连接类型 :根据需要分析的数据类型,选择合适的连接器。
  3. 连接数据 :输入连接信息,如服务器地址、文件路径、认证信息等。
  4. 预览数据 :Tableau 会提供数据的预览,以确保数据被正确地加载。
  5. 确定数据结构 :用户需要决定是否将数据加载为“全部”,或是只加载特定的工作表、列或行。
  6. 保存数据源 :设置好连接后,需要命名并保存数据源,以便后续使用。

2.2.2 数据集的整理与清洗

数据导入之后,通常需要进行整理和清洗,以确保数据的质量。以下是数据整理和清洗的一些关键步骤:

  • 删除不必要的列 :移除数据集中不必要的列,如一些用于内部处理的标识列。
  • 统一格式 :确保日期、数值等数据类型格式统一,便于分析。
  • 处理缺失值 :对于缺失的数据,可以选择填充(例如,用平均值或中位数填充),或者删除包含缺失值的行。
  • 转换数据类型 :如果数据类型不符合分析要求,需要转换到正确的类型,例如将文本转换为日期格式。

2.2.3 案例:导入 CSV 与 Excel 数据

为了进一步加深理解,下面是一个关于如何在 Tableau 中导入 CSV 和 Excel 数据的案例:

  1. 选择数据源类型 :在 Tableau 的“数据”页面,选择“更多”并选择“Microsoft Excel”或“Text File”。

  2. 连接到数据文件 :找到并选择需要导入的 Excel 或 CSV 文件,如果需要,还可以在导入过程中选择特定的工作表或者范围。

  3. 数据预览 :Tableau 将显示出数据的预览,允许用户检查数据是否已经被正确读取。在这一阶段,还可以进行数据过滤和数据类型转换。

  4. 完成数据导入 :确认预览无误后,点击“导入”或“加载”,Tableau 将数据导入到数据源中,以便进行进一步分析。

通过这个案例,我们可以看到 Tableau 提供了一套完整的工具链,帮助用户从数据导入到初步清洗,再到最终的分析。此过程体现了 Tableau 对用户友好的设计理念,能够有效地帮助用户处理和理解数据,从而更加专注于数据分析本身。

graph LR
A[启动 Tableau] --> B[选择数据源类型]
B --> C[连接到数据文件]
C --> D[数据预览]
D --> E[完成数据导入]

通过上述的案例和步骤,我们能够清晰地理解数据导入的过程以及其中的一些技巧。在数据分析之前,良好的数据导入和初步清洗能够为后续的数据分析和可视化奠定坚实的基础。

3. Tableau数据清洗技术与实践

Tableau作为一个强大的数据可视化工具,能够将复杂的数据集转换为易于理解的图形和仪表板。然而,数据清洗是数据分析不可或缺的一步,对于创建有意义的视觉呈现和洞察至关重要。Tableau内置了数据清洗的功能,使得在可视化分析之前处理数据变得更为便捷。

3.1 数据清洗的重要性与方法

3.1.1 数据清洗的目标

数据清洗的主要目的是确保数据的质量,使其适合于分析。高质量的数据应该具有完整性、一致性和准确性。不准确或不完整的数据可以导致误导性的分析结果,影响决策制定。因此,数据清洗的目标包括:

  • 移除重复的记录
  • 处理缺失数据
  • 纠正错误和异常值
  • 标准化数据格式
  • 确保数据的一致性

3.1.2 常用的数据清洗技术

数据清洗涉及一系列技术和方法,以下是一些常用的清洗技术:

  • 使用过滤器排除不相关的数据
  • 利用数据清洗函数处理缺失值和异常值
  • 进行数据分组和数据类型转换
  • 应用数据透视和数据拆分功能以改善数据结构

3.2 Tableau中的数据清洗操作

3.2.1 缺失值和异常值的处理

在Tableau中处理缺失值和异常值是数据清洗的一个重要环节。Tableau提供了多种方式来处理这些数据问题:

  • 缺失值 :可以通过填充平均值、中位数或特定值,或者删除含有缺失值的记录来处理。
  • 异常值 :异常值的处理通常需要依据具体场景来定制策略,比如使用箱线图识别异常值。
代码块示例
// 假设我们要处理名为 "SalesData" 的数据表
// 使用平均值填充缺失值
IF ISNULL([Sales]),
 THEN WINDOW_AVG(AVG([Sales])) // 计算平均值
 ELSE [Sales] // 保留原有值
END

在上述示例代码中,使用了条件函数 IF 和窗口函数 WINDOW_AVG 来检查并用计算出的平均值替代 Sales 字段中的缺失值。注意,这种方法会将缺失值视为整个数据集的平均值,而实际使用时可能需要考虑更细致的条件。

3.2.2 数据分组与合并技巧

有时,数据集中的类别可能具有相似性,但因为细微差异被区分。在这种情况下,合并这些类别可以减少复杂度并突出重要信息。

表格示例

假设有一个包含“Region”字段的数据集,其值如下所示:

| Original Region Name | New Grouped Region | |----------------------|--------------------| | North | East | | Northeast | East | | West | West | | Southwest | West |

要进行数据分组,可以在Tableau的“数据”窗口中使用上下文菜单对值进行分组。

3.2.3 案例:清洗社交媒体数据

社交媒体数据往往杂乱无章,包含非结构化的文本、表情符号、URL和各种格式的数字。Tableau能对这类数据进行清洗,转换为可分析的格式。

mermaid流程图示例
graph LR
    A[开始清洗社交媒体数据]
    A --> B[移除非结构化文本]
    B --> C[识别和标准化表情符号]
    C --> D[提取并格式化URL]
    D --> E[清洗和格式化数字]
    E --> F[数据分析与可视化]

此流程图描述了处理社交媒体数据的基本步骤。每个步骤都可以使用Tableau内置的数据清洗功能来完成。

3.3 小结

在本章节中,我们从理论与实践两个维度详细探讨了Tableau中数据清洗的重要性、常用技术以及具体操作。通过案例分析,我们进一步理解了如何处理缺失值和异常值,以及如何通过分组和合并技巧简化数据集。清洗社交媒体数据的案例展示了Tableau在处理复杂数据集中的强大能力。掌握这些技巧将有助于构建更加准确和有洞察力的Tableau可视化。

4. Tableau数据建模与计算字段应用

4.1 Tableau中的数据建模

4.1.1 数据模型的概念与构建

数据模型是Tableau中用来组织数据的结构,它允许用户按照特定的方式查看和分析数据。Tableau的数据模型通常包括一系列的表、连接和字段,它们共同定义了数据之间的关系。在Tableau中,数据模型可以通过连接来自不同数据源的表来构建,而这些表通过定义关系来共同工作。创建数据模型的过程包括以下步骤:

  • 识别数据源 :确定用于分析的数据源,这可能包括关系型数据库、数据仓库、云服务等。
  • 连接数据源 :使用Tableau的连接功能,将不同的数据源连接在一起。这涉及到选择合适的数据源,并使用连接类型(如内连接、外连接等)定义数据源之间的关系。
  • 构建关系 :在Tableau中,关系是通过链接具有共同字段的表来建立的。这些共同字段称为连接字段。
  • 优化关系 :检查数据模型中的关系是否有效,确保数据的正确性和完整性。必要时进行调整,例如,处理一对多关系。

4.1.2 数据模型的优化策略

构建高效的数据模型是Tableau数据可视化中的关键。优化数据模型不仅可以提升数据处理速度,还能提供更灵活的数据分析。以下是优化Tableau数据模型的一些策略:

  • 减少数据冗余 :确保每个数据表都包含最少的、必要的字段,以避免数据重复和不必要的计算。
  • 使用数据提取 :通过Tableau的数据提取功能,可以创建数据的副本,减少从源数据库读取数据时的延迟。
  • 适当使用数据聚合 :如果数据量非常大,考虑预先进行数据聚合,以减少实时聚合所需的计算资源。
  • 创建计算字段 :使用计算字段来存储预先计算的值,这样可以在多个视图中重复使用这些值,而无需每次都进行计算。
  • 优化连接类型 :合理选择内连接、外连接、左连接和右连接,以减少处理时间和提高数据准确性。

4.2 计算字段的高级应用

4.2.1 计算字段的创建与应用

计算字段是Tableau中的一项强大功能,它允许用户创建新的数据字段,这些字段可以是静态值、基于现有字段的计算结果,或者是更复杂的计算表达式。计算字段对于分析数据和扩展数据模型功能至关重要。创建和应用计算字段涉及以下步骤:

  • 定义计算字段 :通过"分析"菜单中的"创建计算字段"选项,打开计算字段编辑器,定义新的字段。
  • 编写表达式 :使用Tableau的表达式语言(Tableau计算语言,简称TCL)编写表达式。表达式可以包括算术运算、逻辑运算、聚合函数等。
  • 应用计算字段 :将计算字段拖放到视图中,就像使用常规字段一样。计算字段可以在表计算中使用,也可以作为过滤器条件。

4.2.2 案例:构建复杂的度量与维度

为了进一步说明计算字段的应用,我们来看一个构建复杂度量和维度的案例。假设我们有一个零售销售数据集,需要分析每个店铺的平均订单价值和每季度的销售趋势。

  • 创建平均订单价值的计算字段
// 创建一个名为“平均订单价值”的计算字段
[销售总额] / [订单数量]
  • 创建季度销售趋势的计算字段
// 创建一个名为“季度销售趋势”的计算字段
CASE [季度]
  WHEN 'Q1' THEN [销售总额]
  WHEN 'Q2' THEN [销售总额]
  WHEN 'Q3' THEN [销售总额]
  WHEN 'Q4' THEN [销售总额]
END
  • 应用计算字段 :将创建的“平均订单价值”拖放到行或列上,将“季度销售趋势”作为过滤器或分区应用到视图中。

通过这些计算字段,我们能够从多个维度快速分析和可视化销售数据,以支持业务决策过程。

接下来,我们将深入探讨如何运用Tableau进行可视化设计和构建交互式仪表板,这些将使得数据的展示更加直观和互动。

5. Tableau可视化设计技巧与仪表板构建

Tableau作为一款强大的数据可视化工具,其关键之处不仅在于将复杂数据转化为易于理解的图表,更在于如何通过巧妙的设计和功能强大的仪表板,帮助用户从数据中洞察趋势、发现模式并讲述故事。本章节将深入探讨Tableau的可视化设计原则和仪表板构建的最佳实践,以及如何通过创建交互式仪表板来增强数据的表达力。

5.1 Tableau的可视化设计原则

5.1.1 视觉效果的优化

在Tableau中,视觉效果的优化是至关重要的。设计高质量的可视化内容,首先要求分析师具备对颜色、形状、大小、文本等视觉元素的敏感度。视觉效果需要清晰传达信息,并且易于观众解读。

Tableau为用户提供了一整套用于优化视觉效果的工具和功能。例如,通过调整颜色主题,可以实现对数据的直观区分和强调;利用大小和形状的区分,可以有效地展示不同数据系列;而对于数据标签和标题的精确放置和调整,则有助于提高图表的信息含量和易读性。

在进行视觉效果优化时,以下几点原则尤为重要:

  1. 确保颜色对比度足够,以便区分不同的数据集或数据点。
  2. 在可视化中使用恰当的图形标记,比如条形、饼图、散点图等,根据数据特点选择最佳的图表类型。
  3. 通过注释、提示或图例,向观众明确说明数据的含义和可视化设计的意图。
  4. 保持简洁,避免过于复杂的图形设计使信息传达变得模糊不清。

5.1.2 信息展示的最佳实践

为了在Tableau中有效地展示信息,分析师必须遵循一些最佳实践,这些实践有助于确保用户能够快速、准确地理解和分析数据:

  1. 确定数据的核心信息,然后根据这个核心设计视觉元素。
  2. 使用一致的格式和色彩方案来增加用户在不同图表间对比的连贯性。
  3. 利用空间来提高信息的可读性,避免图表过于拥挤。
  4. 将复杂的数据转换为易于理解的格式,如百分比、比率或相对大小。
  5. 对数据进行分段或分类,通过层次结构来引导用户的关注重点。

在设计过程中,图层和排列次序也很重要。清晰的层次可以指导观众的视线顺序,从而高效地传递信息。正确的视觉引导可以强化观众对数据重点的理解。

5.2 交互式仪表板的创建与应用

5.2.1 仪表板设计的策略

仪表板是Tableau中一个特别强大的功能,它能够将多个视图整合为一个界面,使用户能够通过交互来快速浏览和分析数据。设计仪表板需要遵循以下策略:

  1. 明确定义目标用户和他们的需求 :在设计仪表板之前,了解目标用户是至关重要的。分析用户的业务需求,考虑他们需要哪些数据和信息来做出决策。
  2. 确定核心指标和关键问题 :明确哪些指标是用户最关心的,这些指标应该在仪表板中被凸显。同时,针对业务的痛点,设计相关问题的答案。
  3. 选择合适的图表类型和布局 :根据用户的需求选择最合适的视图类型。一个好的布局应该能够清晰地展现数据,并且便于用户快速定位所需信息。
  4. 提供交互功能 :Tableau的仪表板不仅展示了静态的视觉效果,还提供了交互式元素,比如下拉菜单、滑块和筛选器等。这些工具可以增强用户体验,并允许用户根据自己的需求调整视图。

5.2.2 案例:构建跨职能仪表板

为了展示如何实际创建一个有效的交互式仪表板,这里提供一个跨职能仪表板的构建案例。假设需要为销售、市场和财务部门构建一个共享仪表板。

  1. 确定仪表板的结构 :首先,确定三个部门的主要关注点,比如销售部门关心的是销售额、市场占有率和客户增长情况;市场部门关心的是市场活动的ROI、广告支出和潜在客户;财务部门关心的是成本控制、利润率和现金流量。

  2. 选择视图和图表 :接下来,为每个部门选择合适的视图类型。例如,销售部门可能会用到条形图和折线图来展示时间序列数据;市场部门可以用散点图来分析广告支出与市场活动效果的关系;财务部门则可能需要仪表盘和热图来展示收支情况。

  3. 设计交互功能 :在仪表板中加入过滤器和筛选器,使得每个部门的用户可以只查看自己关心的数据。还可以使用动作功能,在仪表板的不同视图间创建互动链接,如点击某个销售区域的条形图,自动筛选出该区域的市场和财务数据。

  4. 优化布局和交互设计 :将视图放置在易于用户浏览的位置,并为每个视图设置合适的大小和格式。确保布局整洁,逻辑清晰,方便用户快速获取信息。

  5. 测试并调整 :在实际部署前,进行用户测试以收集反馈,并根据用户建议调整设计。

通过以上步骤,我们构建了一个既可提供深入分析又方便不同职能部门快速决策的仪表板。这样的设计极大地提高了数据的可用性和价值。

总结而言,Tableau的可视化设计和仪表板构建技巧,能够让数据的表达力更加强大,更能够吸引观众。通过合理的设计原则和交互功能的应用,数据分析师可以创建出既美观又实用的仪表板,从而在商业决策过程中发挥关键作用。

6. Tableau故事叙述与性能优化

6.1 故事叙述在数据分析中的作用

6.1.1 故事叙述的技术与艺术

在数据分析的世界里,故事叙述是将复杂数据转化为有吸引力、易于理解的信息的关键。Tableau不仅是一个数据可视化工具,它更是一个强大的故事叙述平台。利用Tableau的故事功能,可以将一系列的数据可视化制作成连贯的故事线,引导观众逐步理解数据的洞察和结论。

数据故事叙述不仅仅是将视觉元素堆砌起来,更是一个技术和艺术的结合体。技术上,分析师需要利用数据可视化来展现数据中的模式和关系,而艺术上,则要通过合适的叙事手法,使观众在情感上产生共鸣,从而更好地理解和记忆信息。

6.1.2 案例:创建数据分析故事

让我们通过一个案例来了解如何在Tableau中创建一个数据分析故事。假设我们正在分析一家零售公司的销售数据,并需要向公司的管理层报告过去一年的销售趋势、最受欢迎的产品以及客户行为的变化。

首先,在Tableau中,我们使用不同的视图(图表、地图等)来展示关键的分析结果。例如:

  • 使用趋势图展示销售随时间的变化。
  • 利用地图显示不同地区销售业绩的分布。
  • 利用仪表盘表现主要产品的销售业绩。
  • 制作条形图展示最畅销产品的列表。
  • 创建热图来分析不同时间段的客户活跃度。

在完成这些视图的创建后,我们进入Tableau的故事模式。在这里,我们按照逻辑顺序排列这些视图,确保故事的流畅性和连贯性。每个视图下面都添加适当的文本描述,说明视图中的发现以及其背后的原因和可能的业务影响。我们还可以通过交互元素让观众参与进来,比如提供筛选器让用户选择不同的产品类别或时间范围来探索数据。

6.2 Tableau性能优化的方法

6.2.1 性能问题的诊断

Tableau中的性能问题通常表现在数据刷新缓慢、图表加载时间长或交互式响应迟缓等方面。诊断性能问题时,首先需要确认是否是数据源的问题,例如数据量过大或查询复杂。接下来,检查Tableau工作簿和仪表板的设计,如视图中是否有不必要的复杂计算或过度的数据过滤。

一些常见的诊断技巧包括:

  • 使用Tableau的性能检查器来识别问题。
  • 检查数据模型是否需要优化,例如通过预聚合、计算字段等。
  • 分析工作簿中的视图和仪表板,看是否有可以简化的空间。

6.2.2 优化策略与案例实践

在Tableau中优化性能的策略是多种多样的,以下是一些常见的优化方法:

  • 数据模型优化 :确保数据模型尽可能简洁高效,避免数据中的冗余和复杂关联,使用前聚合(如Extracts)来减少实时查询的负载。
  • 计算字段优化 :对计算字段进行简化和优化,避免在Tableau中进行复杂的计算,可以在数据源中预先计算好并导入。
  • 视图简化 :减少视图中不必要的元素和复杂度,比如使用简化的视图类型,减少图形对象的数量等。
  • 增量刷新 :对于大型数据集,实施增量刷新,只更新数据源中发生变化的数据部分。

案例实践 :假设我们有一个涉及数百万条记录的订单数据集,创建一个仪表板来展示实时销售情况。初始的仪表板加载非常缓慢,通过分析我们发现:

  • 数据模型中包含过多不必要的字段和关系。
  • 在视图中使用了复杂的计算字段。
  • 未使用增量刷新,每次刷新都会重新加载全部数据。

解决这些问题后,我们采取以下步骤:

  • 精简数据模型,只保留需要的字段。
  • 移除复杂的计算字段,改用预计算的数据。
  • 重新设计视图,确保视图元素尽量简单。
  • 配置增量刷新,只加载变化的部分。

最终,这些优化措施显著提升了性能,使得仪表板响应迅速,用户体验大幅提升。

在这个过程中,我们不仅对数据进行了分析,还进一步理解了如何通过Tableau的优化工具和策略来提升性能。这样,我们确保了在向观众展示数据故事的同时,也为他们提供了流畅、愉悦的视觉体验。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本书详细介绍了Tableau的强大数据可视化与分析功能,通过丰富的实际案例表格,帮助读者深入理解并实践Tableau的各项技能。它涵盖了从数据连接、清洗、建模,到创建计算字段、可视化设计、交互式仪表板以及故事叙述等全方位的数据分析流程。本书还强调了性能优化和使用参数过滤器增强分析动态性的重要性,以培养读者解决实际问题的能力,促进在数据分析领域的专业成长。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值