Abstract
先前基于图的聚类方法存在不足之处:没有从这两个方面进行研究
①方法的泛化
②不同图度量对聚类结果的影响
本文扩展了这个方法,首先提出了一个通用的基于图的多视图聚类系统(GBS),并在框架内讨论和评估了不同的图度量对多视图聚类性能的影响。
GBS工作原理:
①提取每个视图的数据特征矩阵;
②构造所有视图的图矩阵;
③将构造的图矩阵融合成统一的图矩阵,从而生成最终得聚类。
提出了一种适用于GBS框架的多视图聚类方法:该方法
①有效的构造了图矩阵;
②自动加权了每个图矩阵;
③直接生成聚类结果。
这个方法是属于多视图子空间类别。该方法是将从不同视图中学习到的子空间表示矩阵看成一个张量,张量可以捕获多视图数据之间的高阶相关性。再对这个张量施加低秩约束,这个约束可以优雅的建模不同视图之间的交叉信息,从而有效的减少子空间表示的冗余,提高聚类的精确度。通过增广的拉格朗日交替方向乘子法(AL-ADM) 有效的解决优化问题,在各种实验数据集上证明了该方法的有效性。