A study of graph-based system for multi-view clustering

本文提出了一种通用的基于图的多视图聚类系统(GBS),探讨不同图度量对聚类性能的影响。该方法通过特征提取、图构造、多视图融合和自动加权生成精确的聚类结果,有效利用多视图数据的高阶相关性,并通过AL-ADM法优化。实验证明其在多视图聚类任务中的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

先前基于图的聚类方法存在不足之处:没有从这两个方面进行研究

①方法的泛化
②不同图度量对聚类结果的影响
本文扩展了这个方法,首先提出了一个通用的基于图的多视图聚类系统(GBS),并在框架内讨论和评估了不同的图度量对多视图聚类性能的影响。

GBS工作原理:

①提取每个视图的数据特征矩阵;
②构造所有视图的图矩阵;
③将构造的图矩阵融合成统一的图矩阵,从而生成最终得聚类。

提出了一种适用于GBS框架的多视图聚类方法:该方法

①有效的构造了图矩阵;
②自动加权了每个图矩阵;
③直接生成聚类结果。

这个方法是属于多视图子空间类别。该方法是将从不同视图中学习到的子空间表示矩阵看成一个张量,张量可以捕获多视图数据之间的高阶相关性。再对这个张量施加低秩约束,这个约束可以优雅的建模不同视图之间的交叉信息,从而有效的减少子空间表示的冗余,提高聚类的精确度。通过增广的拉格朗日交替方向乘子法(AL-ADM) 有效的解决优化问题,在各种实验数据集上证明了该方法的有效性。

Introduction

近年来,基于图的多视图聚类产生了几种最先进的多视图聚类算法。这些方法的工作原理为:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值