研究背景
空间索引的基本思想,也是空间查询的根本思想,是实施“近似”的思想。通过这种方法,索引结构可以根据一个或几个空间代码来管理对象。这种空间代码是一种比对象本身更简单的几何对象,例如最小边界矩形。通过使用规则网格,通过将空间划分为单元格来实现网格的近似。对象可以通过一系列与之相交的单元格来表示。我们可以通过应用近似的思想获得一种用于过滤和选择查询过程的方法。首先,我们可以进行基于近似的过滤方法,即从整个数据集中筛选出候选集。候选集被视为满足特定条件的所有对象的超集。然后,在查询选择过程中,我们可以使用精确的几何信息逐个查看每个候选对象。
研究主旨
本文提出了一种结合网格索引和R树索引优点的新GIS数据空间索引结构,以提高GIS数据处理的效率。新结构利用网格的固定划分特性,减少了重叠区域,同时在网格内部建立R树,以适应不同大小的查询需求。此外,由于GIS数据更新频率低,可以预先处理数据,使R树紧密打包,进一步优化查询效率。
研究特点
随着信息技术的发展,空间数据在人们的日常生活和工业制造中扮演着越来越重要的角色。对空间数据处理和检索的需求正在挑战传统的数据库技术。空间数据库的出现极大地提高了空间数据处理的效率。作为空间数据库的关键组成部分,空间索引技术在过去几年中得到了蓬勃的发展,各种新的索引结构正在被开发、改进和淘汰。本文关注空间索引结构,首先回顾了网格索引结构,介绍了经典的R树索引结构及其变体,然后根据GIS数据的特性,开发了一种新的GIS数据空间索引结构,结合了网格索引和R树索引的优点,并通过实验验证了其高效率。