【推荐算法课程一】推荐算法介绍-基础算法

本系列教程也可以称为【深度学习-推荐系统】的读书笔记,该书系统化讲解了现代推荐系统的演进历程和工程实现,是一本非常优秀的推荐系统入门教程

一、推荐系统架构

1.1 推荐系统介绍

概述:获得“用户信息”、“物品信息”、“场景信息”的基础上,推荐系统要处理的问题可以形式化的定义为对于用户U(user),在特定场景C(context)下,针对海量的“物品信息”,构建一个函数f(U, I, C),预测用户对特定候选物品I(item)的喜好程度,再根据喜好程度对所有候选物品进行排序,生成推荐列表的问题;

  • 用户信息:每个人的用户画像信息
  • 物品信息:物品信息指需要被推荐的物品;商业推荐中就是“商品信息”,视频推荐中就是“视频信息”,新闻推荐中就是“新闻信息”,可统称为“物品信息”;
  • 场景信息:在具体的推荐场景中,用户的最终选择一般会受时间、地点、用户的状态等一系列环境信息的影响·,可称为“场景信息”;

在这里插入图片描述
1.2 引擎架构
数据架构:拿到原始的数据信息后,推荐系统的数据处理系统会将原始数据进一步加工,加工后的数据出口主要有以下三个:

  1. 样本数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值