子图同构之乌尔曼算法Ullmann Algorithm的python实现

子图同构之乌尔曼算法Ullmann Algorithm的python实现

第一章:子图同构与 Ullmann 算法基础概念

给定两个图 G a G_a Ga(子图)和 G b G_b Gb(原图),其中 G a G_a Ga p a p_a pa个点和 q a q_a qa条边, G b G_b Gb p b p_b pb个点和 q b q_b qb条边,其邻接矩阵分别为 A A A B B B。子图同构的关键在于找到一种从 G a G_a Ga的点到 G b G_b Gb的点的映射 M M M M M M是一个 p a p_a pa p b p_b pb列的矩阵,且满足每行只有一个 1 1 1(表示 G a G_a Ga中的一个点唯一地映射到 G b G_b Gb中的一个点),每列至多一个 1 1 1(确保 G b G_b Gb中的点不会被重复映射)。
定义 C = [ c i j ] = M ( M B ) T C=[c_{ij}]=M(MB)^T C=[cij]=M(MB)T ,若在图 G a G_a Ga i i i j j j有边能推导出图 C C C i i i j j j有边(即 a i j = 1 a_{ij}=1 aij=1能推导出 c i j = 1 c_{ij}=1 cij

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值