李宏毅自注意力机制笔记 (Self-attention)

本文讨论了在序列标注任务中常见的几种输入输出形式,包括每个向量对应一个标签、整个序列只有一个标签的情况,以及模型自决定标签数量的方式。此外,文中还提到了通过窗口方法将孤立的向量整合起来输入到全连接网络中的做法,并简要提及了自我注意机制(Self-attention)及其在该领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Vector Set as Input

What is the output

1.Each vector has a label.
2.The whole sequence has a label.
3.Model decides the number of labels itself.

Sequence Labeling

  • 太孤立了把相邻向量串进去喂到全连接网络 (window)

在这里插入图片描述

  • Self-attention
    在这里插入图片描述
  • 或是下边这样

在这里插入图片描述

  • 最知名的文章
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • relevant 计算

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值