
机器学习实战项目
文章平均质量分 94
机器学习实战项目,主要运用于各个行业中的需求,切合生活中的应用场景,实现分类、回归预测分析,主要运用:线性回归、逻辑回归、决策树、聚类分析、支持向量机、主成分分析等算法+深度学习,解决实际问题
微学AI
人工智能高级研发者,名校硕士学历毕业,拥有15项AI领域发明专利,主攻深度学习实战案例、机器学习实战案例、大模型实战项目,研究方向包括:深度学习应用技巧,Pytorch搭建模型,机器学习经典模型,计算机视觉,自然语言处理,知识图谱,大模型实战(包括:ChatGLM、通义千问、百川、LLaMA、书生等开源模型的微调技巧、Qlora微调、提示词工程、思维链、RAG技术、LangChain框架、智能体应用项目、大模型私有化部署)。项目主要运用于医疗健康、政府文档、教育、金融、生物学、物理学、企业管理等领域。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习实战37-基于情感字典和机器学习的股市舆情分析可视化系统
在当今数字化时代,股市投资者情绪对股价波动具有显著影响。根据姜富伟教授团队的研究,"媒体文本情绪可以更准确地衡量我国股市投资者情绪的变化,对我国股票回报有显著的样本内和样本外预测能力"。社交媒体、财经论坛和新闻网站上的海量文本数据蕴含着丰富的市场情绪信息,这些信息对投资决策和风险管理具有重要价值。原创 2025-06-04 17:08:29 · 900 阅读 · 0 评论 -
机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现
本项目是一个基于动态规划和遗传算法的水泵调度优化系统。该系统旨在通过数学建模和智能算法,对两个泵房的24小时运行进行优化调度,以最小化能源消耗。原创 2025-06-03 17:07:43 · 564 阅读 · 0 评论 -
机器学习实战35-基于遗传算法与规则的机场派工人员模型优化方案
遗传算法(Genetic Algorithm, GA)是一种模拟自然界生物进化过程的全局优化算法。其核心思想是通过"选择-交叉-变异"操作,使种群不断进化,逐步逼近最优解。适用于复杂约束、多目标优化问题。原创 2025-05-29 11:05:30 · 202 阅读 · 0 评论 -
机器学习实战34-关于融合多头注意力机制((Multiple-Head Attention))+LSTM模型的冬小麦需水量预测
多头注意力机制最初由Vaswani等人在《Attention is All You Need》这篇论文中提出,它通过并行执行多个独立的注意力函数来增强原始Transformer架构的信息处理能力。每个“头”都专注于数据的不同方面,之后再将各个头的结果汇总起来得到最终输出。这样设计的好处在于既保留了局部细节又兼顾全局视角,提高了模型的理解力和泛化性能。在农业领域内,作物生长周期内的水资源需求量直接影响着最终产量与品质。原创 2025-02-13 11:42:03 · 202 阅读 · 1 评论 -
机器学习实战33-LSTM+随机森林模型在股票价格走势预测与买卖点分类中的应用
通过评估指标,我们发现LSTM模型在股票价格预测方面表现出了一定的准确性,而随机森林模型则有效地对LSTM的预测结果进行了分类,提高了买卖点判断的准确性。具体来说,融合后的模型在测试集上的MSE较低,表明价格预测较为准确;同时,准确率、召回率和F1 - score也较高,说明分类效果良好。原创 2025-01-15 11:41:23 · 1732 阅读 · 0 评论 -
机器学习实战32-利用机器学习对电商销售数据进行归因分析的方法,旨在找出销量下降的原因
随着互联网技术的飞速发展,电子商务已经成为现代商业活动的重要组成部分。在这一背景下,如何有效利用海量的数据资源来优化决策过程、提升运营效率成为了电商企业面临的一大挑战。其中,通过对销售数据进行深入分析以理解影响业绩变化背后的因素,即所谓的“归因分析”,显得尤为重要。而机器学习作为一种强大的数据分析工具,在解决此类问题上展现出了巨大潜力。机器学习是人工智能领域的一个分支,它使计算机系统能够从经验中学习,并根据所学知识做出预测或决策,而无需显式编程。原创 2024-12-23 15:56:04 · 618 阅读 · 0 评论 -
机器学习实战31-基于机器学习算法对某年福州市各公立初中重点高中录取率进行数学分析,评估性价比较高的学校。
大家好,我是微学AI,今天给大家介绍一下机器学习实战31-基于机器学习算法对某年福州市各初中重点高中录取率进行数学分析,评估性价比较高的学校。原创 2024-12-12 15:21:03 · 808 阅读 · 0 评论 -
机器学习实战30-关于机器学习与深度学习在油气产量预测中的研究进展与技术展望
在油气产量预测领域,利用机器学习(Machine Learning, ML)和深度学习(Deep Learning, DL)技术已经成为一种趋势。这两种方法能够处理复杂的数据模式,并提供比传统统计方法更准确的预测结果。本节将详细介绍几种常见的机器学习与深度学习算法,包括它们的基本原理、优缺点以及在油气产量预测中的应用情况。假设我们已经有了一个名为的数据文件,其中包含了几种不同的特征变量(如井深、岩石类型等)以及目标变量——实际的油气产量。我们可以使用Pandas库来轻松地加载这份数据。原创 2024-12-09 11:05:45 · 678 阅读 · 0 评论 -
机器学习实战29-AI模型在高血脂症疾病的预测与治疗决策上的应用
高血脂症,也称为血脂异常或血脂紊乱,是指血液中脂质(如胆固醇和/或甘油三酯)水平升高的一种代谢性疾病。根据世界卫生组织(WHO)的标准,当空腹血清总胆固醇(TC)≥6.2 mmol/L (240 mg/dL),低密度脂蛋白胆固醇(LDL-C)≥4.1 mmol/L (160 mg/dL),或者甘油三酯(TG)≥2.3 mmol/L (200 mg/dL)时,即可诊断为高血脂症。此外,若高密度脂蛋白胆固醇(HDL-C)原创 2024-10-23 10:57:13 · 910 阅读 · 0 评论 -
机器学习实战28-如何利用机器学习中的经典模型进行买房决策的实战应用
对于买房,作为人生中一项重大的财务决策,不仅涉及个人居住质量的提升,还关乎资产配置与财富增长的长远规划。随着房地产市场的复杂多变,传统基于经验的购房决策模式日益显露出局限性。近年来,房地产价格在逐步得回归正常居住属性,房子的价格也在回落,本文我们通过机器学习进行分析房价的合理区间,机器学习作为一种强大的数据分析工具,因其在处理复杂数据、发现隐藏规律及进行精准预测方面的能力,被广泛探讨并逐步应用于买房决策过程中,为购房者提供更加科学、全面的辅助决策支持。原创 2024-10-15 15:11:49 · 1351 阅读 · 1 评论 -
机器学习实战27-基于双向长短期记忆网络 BiLSTM 的黄金价格模型研究
在全球经济体系中,黄金作为避险资产的角色无可替代。其价格波动不仅反映了金融市场的情绪变化,还是全球经济健康状况的晴雨表。准确预测黄金价格对于投资者制定投资策略、企业进行风险管理、政府调整货币政策等方面具有重大意义。特别是在经济不确定性增加时,黄金价格的预判能力尤为重要,它能帮助市场参与者捕捉投资机会,规避潜在风险。首先,确保已安装 PyTorch 库。接下来,导入必要的库,并对黄金价格数据进行预处理,然后定义 BiLSTM 模型。### 4.1.1 数据预处理。原创 2024-10-08 11:09:52 · 1535 阅读 · 0 评论 -
机器学习实战26-一种基于LightGBM的股市涨跌预测系统与代码实现过程
在全球经济一体化的背景下,股市作为经济活动的晴雨表,其波动与预测对于投资者、金融机构乃至国家政策制定者而言至关重要。随着金融市场的日益复杂化与信息量的爆炸式增长,股市分析不再仅限于基本面和技术面的传统研究,而是迫切需要更加精准、高效及智能化的方法来捕捉市场动态,以辅助决策制定。模型评估是确保LightGBM股市预测系统准确性和稳定性不可或缺的一环。通过综合运用多种评估指标、科学的验证方法以及深入的性能分析,我们不仅能够全面理解模型的能力和限制,还能为持续优化模型、提升预测准确性奠定坚实基础。原创 2024-09-29 14:50:31 · 1772 阅读 · 0 评论 -
机器学习实战25-用多种机器学习算法实现各种数据分析与预测
在当今信息爆炸的时代,数据已成为企业和组织的核心资产之一,它如同新时代的石油,潜藏着巨大的价值和洞察力。随着大数据技术的发展,数据的收集、存储和处理能力大幅提升,但如何从这些海量数据中提取出有价值的信息,以支持决策制定、优化业务流程、提升用户体验,乃至开拓新的商业模式,成为了各行业面临的重要挑战。这正是机器学习算法应用于数据分析项目的根本动机和时代背景。K-means算法的核心思想是通过迭代的方式将数据分配到K个聚类中,使得每个数据点到其所属聚类中心的距离平方和最小。初始化。原创 2024-09-23 15:11:42 · 2369 阅读 · 0 评论 -
机器学习实战23-基于手动搭建的神经网络模型对旅客上座率预测项目的研究
大家好,我是微学AI,今天给大家介绍一下机器学习实战23-基于手动搭建的神经网络模型对旅客上座率预测项目的研究。本文围绕基于神经网络模型的旅客上座率预测模型研究项目展开。首先介绍项目背景,阐述了准确预测旅客上座率的重要性。接着详细讲解了运用到的神经网络模型原理,为读者呈现其工作机制。文中给出了旅客上座率数据样例,增强了读者对实际数据的直观感受。原创 2024-09-12 19:26:10 · 1602 阅读 · 0 评论 -
机器学习实战22-基于Random Forest算法的学生数学成绩预测系统的应用研究
大家好,我是微学AI,今天给大家介绍一下本文机器学习实战22-基于Random Forest算法的学生数学成绩预测系统的应用研究。本文利用Random Forest算法研究学生数学成绩预测的应用,选取了具有代表性的学生数学成绩数据样例,并利用Random Forest算法进行了完整的代码实现。原创 2024-09-12 19:03:32 · 2105 阅读 · 1 评论 -
机器学习实战21-基于XGBoost算法实现糖尿病数据集的分类预测模型及应用
XGBoost,即Extreme Gradient Boosting,是一种高效、灵活且分布式的梯度增强决策树算法,由陈天奇等人开发。它在机器学习竞赛平台Kaggle上因其卓越的性能而广受赞誉,尤其在回归和分类问题上表现突出。本部分将深入探讨XGBoost的核心数学原理,解析其如何在传统梯度提升框架基础上通过一系列创新设计达到更高的准确性和效率。在数据科学领域,Kaggle 成为了一个广受欢迎的数据集存储库和竞赛平台,吸引了众多研究者和实践者探索和应用机器学习算法。原创 2024-09-12 16:57:51 · 2554 阅读 · 0 评论 -
机器学习实战20-利用AnoSVGD算法探索多指标的异常检测的应用
大家好,我是微学AI,今天给大家介绍一下机器学习实战20-利用AnoSVGD算法探索多指标的异常检测的应用。SVGD(Stein Variational Gradient Descent)是一种通用的变分推断算法,它是优化中梯度下降的自然对应物。SVGD通过应用一种功能性梯度下降来迭代地传输一组粒子,以最小化KL散度,从而与目标分布相匹配。原创 2024-07-02 15:46:41 · 1097 阅读 · 0 评论 -
机器学习实战19-利用机器学习模型与算法实现销售数据的归因分析与图形生成
大家好,我是微学AI,今天给大家介绍一下机器学习实战19-利用机器学习模型与算法实现销售数据的归因分析。归因分析是数据分析中的一个重要环节,它主要用于确定不同因素对特定结果(如销售额、转化率等)的贡献程度。在Python中,可以通过多种方式实现归因分析,包括使用现成的库和编写自定义函数。原创 2024-06-18 14:42:59 · 1119 阅读 · 0 评论 -
机器学习实战18-机器学习中XGBClassifier分类器模型的应用实战,以及XGBClassifier分类器的调优策略
大家好,我是微学AI,今天给大家介绍一下机器学习实战18-机器学习中XGBClassifier分类器模型的应用实战,以及XGBClassifier分类器的调优策略。XGBClassifier是基于eXtreme Gradient Boosting (XGBoost)算法的分类器模型,在机器学习领域有着广泛应用。作为一种迭代的决策树提升方法,XGBClassifier通过集成多个弱学习器(通常是 CART 决策树)来构建强学习器,以实现对各类分类问题的高效预测。原创 2024-04-02 10:23:46 · 2427 阅读 · 0 评论 -
机器学习实战17-高斯朴素贝叶斯(GaussianNB)模型的实际应用,结合生活中的生动例子帮助大家理解
大家好,我是微学AI,今天给大家介绍一下机器学习实战17-高斯朴素贝叶斯(GaussianNB)模型的实际应用,结合生活中的生动例子帮助大家理解。GaussianNB,即高斯朴素贝叶斯模型,是一种基于概率论的分类算法,广泛应用于机器学习领域。该模型假设特征之间相互独立,并且每个特征服从高斯分布(正态分布),通过学习训练数据集中的先验概率和条件概率来实现对未知数据的预测。原创 2024-04-01 17:06:00 · 4509 阅读 · 0 评论 -
机器学习实战16-关于自适应增强AdaBoost模型的实际应用,AdaBoost模型模型结构介绍
大家好,我是微学AI,今天给大家介绍一下机器学习实战16-关于自适应增强AdaBoost模型的实际应用,AdaBoost模型模型结构介绍。AdaBoost是一种迭代式集成学习算法,其全称为“Adaptive Boosting”,即自适应增强。该模型通过结合多个弱分类器来构建一个强分类器,以提高预测性能和模型准确性。在每一轮迭代中,AdaBoost会根据前一轮各个弱学习器的错误率分配不同的权重给样本,对难以正确分类的样本给予更高的关注,然后训练新的弱分类器。原创 2024-04-01 16:48:47 · 1562 阅读 · 0 评论 -
机器学习实战15-推荐算法-协同过滤在电影推荐中的应用实践
大家好,我是微学AI,今天给大家介绍一下机器学习实战15-推荐算法-协同过滤在电影推荐中的应用实践。 随着互联网的发展,信息过载问题日益严重,推荐系统应运而生。本文将详细介绍推荐算法在电影推荐领域的应用实践,以及其背后的数学原理。本博客我将介绍推荐系统的背景与应用场景,然后详细阐述推荐算法的数学原理,然后通过一个电影推荐的实例来展示推荐算法的实际应用,利用python代码实现一个案例。原创 2024-01-19 17:34:53 · 2134 阅读 · 0 评论 -
机器学习实战14-在日本福岛核电站排放污水的背景下,核电站对人口影响的分析实践
大家好,我是微学AI,今天给大家介绍一下机器学习实战14-在日本福岛核电站排放污水的背景下,核电站对人口影响的分析实践。近日,日本政府举行内阁成员会议,决定于2023年8月24日启动福岛核污染水排海。当地时间2023年8月24日13时,日本福岛第一核电站启动核污染水排海。福岛第一核电站的核污水中含有多种放射性物质。对人体存在伤害,其中,锶-90可导致骨组织肉瘤、引发白血病;铯-137会引起软组织肿瘤与癌症;碘-129容易导致甲状腺癌;碳-14可能会损害人类DNA。原创 2023-08-25 11:40:17 · 990 阅读 · 3 评论 -
机器学习实战13-超导体材料的临界温度预测与分析(决策树回归,梯度提升回归,随机森林回归和Bagging回归)
大家好,我是微学AI,今天给大家介绍一下机器学习实战14-超导体材料的临界温度预测与分析(决策树回归,梯度提升回归,随机森林回归和Bagging回归),这几天引爆网络的科技大新闻就是韩国科研团队宣称发现了室温超导材料-LK-99,这种材料在常压情况下,127摄氏度就可以打达到超导临界点,他们还在推特上建立的账号,发布了相关视频。上个世纪到现在科学家都在实验寻找超导材料,如果实现室温超导,那将是科学家们梦寐以求的追求,如果实现,可以毫不夸张的说是“第四次工业革命”,人类的整个工业体系将被重塑。原创 2023-08-03 15:13:19 · 2685 阅读 · 7 评论 -
机器学习实战12-基于历史数据的台风的预测与分析(2023年第5号台风杜苏芮将登陆福建)
大家好,我是微学AI,今天给大家介绍一下机器学习实战12-基于历史数据的台风的预测与分析,台风预测与分析是一项重要的气象研究项目,旨在提前预测、跟踪和分析台风的路径、强度和可能对地区造成的影响。台风是一种强大而具有破坏性的气象灾害,经常给沿海地区带来巨大的风暴潮、暴雨和强风,并导致洪涝、山体滑坡等次生灾害。原创 2023-07-23 08:46:20 · 7697 阅读 · 0 评论 -
机器学习实战11-基于K-means算法的文本聚类分析,生成文本聚类后的文件
大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目13-基于K-means算法的文本聚类分析,生成文本聚类后的文件。文本聚类分析是NLP领域的一个核心任务,通过将相似的文本样本分组,可以帮助我们发现隐藏在文本数据中的模式和结构。原创 2023-07-21 19:16:11 · 3806 阅读 · 2 评论 -
机器学习实战10-基于spark大数据技术与机器学习的结合应用实战
大家好,我是微学AI,今天给大家介绍一下机器学习实战10-基于spark大数据技术与机器学习的结合应用实战,Spark是一种快速、通用的大数据处理框架。它是由加州大学伯克利分校AMPLab开发。Spark提供了一个分布式计算的平台,可以在集群中并行处理大规模的数据集。原创 2023-07-19 11:37:31 · 2449 阅读 · 2 评论 -
机器学习实战9-基于多模型的自闭症的筛查与预测分析
大家好,我是微学AI,今天给大家介绍一下机器学习实战9-基于多模型的自闭症的筛查与预测分析,自闭症是一种神经发育障碍,主要表现为人际交往和社交互动的困难、沟通障碍以及重复刻板行为。早期的筛查和分析对于儿童自闭症的诊断和干预至关重要。原创 2023-07-18 11:01:38 · 1586 阅读 · 8 评论 -
机器学习实战8-基于XGBoost和LSTM的台风强度预测模型训练与应用
大家好,我是微学AI,今天给大家介绍一下机器学习实战8-基于XGBoost和LSTM的台风强度预测模型训练与应用,今年夏天已经来了,南方的夏天经常会有台风登陆,给人们生活带来巨大的影响,本文主要基于XGBoost模型和长短期记忆(LSTM)模型对台风强度进行了预测。通过具体的代码实台风强度的预测,具有较好的应用价值。原创 2023-07-01 20:58:09 · 8203 阅读 · 8 评论 -
机器学习实战7-基于机器学习算法预测相亲成功率
大家好,我是微学AI,今天给大家介绍一下机器学习实战7-基于机器学习算法预测相亲成功率,随着社会的发展,大家都忙于事业,对自己的终身大事就耽搁了,相亲是一种传统的寻找伴侣的方式,随着时代的发展,相亲的方式也在不断地改变。在这个过程中,了解相亲双方的信息以及预测相亲是否成功变得越来越重要。本文将介绍如何使用随机森林算法对相亲成功进行预测,通过分析男女双方的房子、车子、长相、家庭条件、父母情况、生活习惯、学历、性格、兴趣等因素,来预测相亲是否成功。原创 2023-05-30 21:31:09 · 2373 阅读 · 6 评论 -
自然语言处理实战项目7-利用层次聚类方法做文本的排重,从大量的文本中找出相似文本
大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目7-利用层次聚类方法做文本的排重,从大量的文本中找出相似文本。随着互联网技术的不断发展,越来越多的数据被广泛地应用在各个领域中。而文本数据是其中之一,文本排重是对这些数据进行加工的一个重要的环节。为了减少计算资源的浪费,缩短运行时间,利用层次聚类算法实现文本排重是一个不错的选择。原创 2023-05-18 18:31:00 · 954 阅读 · 0 评论 -
深度学习技巧应用15-自动机器学习Autogluon的应用技巧
大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用15-自动机器学习Autogluon的应用技巧,Autogluon是一个开源的自动化机器学习工具包,Autogluon的开发目标是为机器学习从业者提供一个高效、易用、可扩展的自动化机器学习工具,让机器学习变得更加简单快捷。本文采用儿童自闭症数据集做自闭症的筛查预测。原创 2023-05-16 18:08:08 · 1282 阅读 · 0 评论 -
机器学习实战6-糖尿病疾病的预测与分析(随机森林算法)
大家好,我是微学AI,今天给大家介绍一下机器学习实战6-糖尿病疾病的预测与分析(随机森林算法),糖尿病是一种常见的慢性代谢性疾病,由于生活方式及基因等因素的影响,全球范围内糖尿病患者人数不断增加。预测糖尿病的发生有助于早期筛查和干预治疗,以降低糖尿病带来的危害。糖尿病的预测问题可以看作是一个二分类问题:对于某个人的特征数据,根据其是否患有糖尿病进行分类预测。常用的算法包括逻辑回归、支持向量机、决策树等。原创 2023-05-12 15:59:55 · 4079 阅读 · 0 评论 -
机器学习实战5-天气预测系列:利用数据集可视化分析数据,并预测某个城市的天气情况
大家好,我是微学AI,最近天气真的是多变啊,忽冷忽热,今天再次给大家带来天气的话题,机器学习实战5-天气预测系列,我们将探讨一个城市的气象数据集,并利用机器学习来预测该城市的天气状况。该数据集包含年平均温度和湿度等信息。原创 2023-04-17 18:46:29 · 15442 阅读 · 25 评论 -
机器学习实战4-教育领域:学生成绩的可视化分析与成绩预测-详细分析
大家好,我是微学AI,今天给大家带来机器学习实战4-学生成绩的可视化分析与成绩预测,机器学习在教育中的应用具有很大的潜力,特别是在学生成绩的可视化分析与成绩预测方面。机器学习可以通过对学生的父母教育情况和学校表现等数据进行分析和挖掘,从而揭示潜在的学习模式和趋势。原创 2023-04-15 21:59:32 · 7007 阅读 · 24 评论 -
机器学习实战3-利用决策树算法根据天气数据集做出决策
大家好,我是微学AI,今天给大家介绍一下机器学习实战3-利用决策树算法根据天气数据集做出决策,决策树是一种广泛使用的机器学习算法,用于分类和回归问题。每个节点都有一个决策规则,用于判断当前数据样本的特征属性值是否满足要求,根据规则的判断结果,将数据样本分配到该节点的某个子节点。决策树的构建是通过一种递归的分割方式实现的,每一次分割都是为了提高模型的预测准确性。欢迎大家关注与支持。原创 2023-04-02 10:51:13 · 6056 阅读 · 1 评论 -
机器学习实战2-聚类算法分析亚洲足球梯队
大家好,我是微学AI,今天给大家带来机器学习实战案例,分析亚洲足球梯队。2022年卡塔尔世界杯将在本月进行,不到半个月就开幕了,本届世界杯通过预选赛已选出32支球队。原创 2022-11-06 16:29:02 · 1734 阅读 · 9 评论 -
机器学习实战1-四种算法对比对客户信用卡还款情况进行预测与模型评估
大家好,我是微学AI,今天给大家带来一个机器学习实战案例:利用机器学习的四种算法对比对客户信用卡还款情况进行分类。原创 2022-05-13 15:18:40 · 4134 阅读 · 6 评论