PagedAttention是什么
PagedAttention是一种用于优化Transformer架构中注意力机制的技术,主要用于提高大语言模型在推理阶段的效率,特别是在处理长序列数据时能有效减少内存碎片和提高内存利用率。它借鉴了操作系统中虚拟内存分页机制的思想。
工作原理
- 传统注意力机制的局限性:传统的注意力机制在处理长序列时,需要为每个位置计算注意力得分并存储中间结果,这会导致内存占用随着序列长度的增加而急剧上升,并且容易产生内存碎片,降低内存的使用效率。
- 分页存储机制:PagedAttention将输入序列划分为多个固定大小的页(pages),并采用一种类似于分页存储的机制来管理内存。在计算注意力时,它只需要在需要的页之间进行计算和访问,而不需要一次性处理整个长序列,从而大大减少了内存碎片,提高了内存的利用效率和计算速度。
- 内存共享:PagedAttention还支持高效的内存共享。例如,在并行采样或波束搜索等复杂推理模式中,多个生成分支可以共享相同的KV缓存,从而显著减少内存开销。
优势
- 减少内存碎片:通过分页机制,PagedAttention可以有效减少内存碎片,提高内存利用率。
- 提高计算效率:在处理长序列时,PagedAttention可以显著提高计算效率,因为它不需要一次性处理整个序列。
- 内存共享:PagedAttention支持高效的内存共享,特别是在并行采样和波束搜索等复杂推理模式中。
使用方法
- 导入相关库:通常需要导入包含PagedAttention实现的相关深度学习库,比如如果是基于vLLM框架使用PagedAttention,需要导入相关的库。
- 配置参数:根据具体的应用场景,配置PagedAttention的相关参数,如页大小等。
应用场景
PagedAttention特别适用于需要处理长序列数据的大语言模型推理场景,如自然语言处理中的文本生成、机器翻译等任务。
综上所述,PagedAttention通过其创新的分页存储机制和内存共享特性,为大语言模型的高效推理提供了一种有效的解决方案。
Continuous Batching是什么
Continuous Batching(连续批处理) 是一种用于优化大语言模型(LLM)推理性能的技术,特别是在处理自回归生成任务时,能够显著提升吞吐量和资源利用率。
核心概念
- 动态批处理:与传统的静态批处理不同,连续批处理不是在推理开始时固定批次大小,而是在每次迭代(生成一个Token)时动态调整批次。
- 迭代级调度:每次生成一个Token后,系统会检查是否有新的请求到达,并尝试将这些新请求插入到当前批次中,从而避免GPU资源的浪费。
- 内存优化:通过动态调整批次大小,连续批处理可以减少内存碎片,并提高KV Cache(键值缓存)的利用率。
工作原理
- 动态插入新请求:当一个请求完成时,系统会立即用新的请求填充空闲的槽位,而不是等待整个批次完成。
- 内存管理:通过PagedAttention等技术,将KV Cache划分为多个小块,动态管理内存分配,从而支持更高效的并行处理。
- 调度策略:系统会根据当前的资源使用情况和新请求的优先级,动态调整批次的组成,以最大化资源利用率。
优势
- 显著提升吞吐量:通过动态调整批次大小和插入新请求,连续批处理可以将LLM推理的吞吐量提升数倍甚至数十倍。
- 减少延迟:相比传统的静态批处理,连续批处理可以在减少延迟的同时提高吞吐量。
- 优化资源利用率:通过动态管理内存和批次,连续批处理可以更好地利用GPU资源,减少内存碎片。
应用场景
- 大语言模型推理:连续批处理已成为LLM推理框架(如vLLM、DeepSpeed-MII、TensorRT-LLM等)的标准技术。
- 实时交互系统:在需要快速响应用户请求的场景中,连续批处理可以显著提升系统的性能。
实现方式
- vLLM:通过PagedAttention和动态内存管理,vLLM实现了高效的连续批处理。
- DeepSpeed-MII:提出了Dynamic SplitFuse策略,通过动态分割长提示并将其与生成过程结合,进一步优化了连续批处理。
- TensorRT-LLM:通过In-flight Batching技术,允许在每次迭代中动态调整批次