SLAM算法面试常见问题总结

本文总结了SLAM算法面试中的常见问题,涵盖了卡尔曼滤波、滤波与优化的区别、相机与陀螺仪标定、ORB特征提取、特征点方法、四叉树与八叉树原理、PnP与ICP算法、BA流程、坐标系理解、ROS消息机制、几何变换等关键知识点。此外,还探讨了闭环检测、SVO深度滤波器、RANSAC算法和SLAM框架的优缺点。适合SLAM从业者和求职者复习准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写于文前:要找工作了。毫无头绪。只能将网上关于slam的面经总结一下,希望有用。祝大家找到好工作!
首先感谢https://zhuanlan.zhihu.com/p/76280626;https://www.cnblogs.com/xtl9/p/8053331.html的面经。

1.解释下卡尔曼滤波?

. 卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。因为观测数据中包括系统中的噪声和干扰的影响,因此最优估计也可以当作是滤波的过程。(顺便复习粒子滤波!)

2.基于滤波和基于优化的区别以及做法?

. slam的后端一般分为两种处理方法,一种是EKF(扩展卡尔曼滤波)为代表的滤波方法,一种是以图优化为代表的非线性优化(BA)方法。主流方法还是图优化。
. 滤波方法的优缺点:(1)优点:在资源受限、待估计量比较简单的情况下,EKF比较有效,经常用在激光slam中。
(2)缺点:存储量和状态量是平方增长关系(存储的是协方差矩阵)。不适合大型场景。现阶段,基于视觉的slam中特征点数据大,滤波方法效率非常低。
.图优化一般分为两个任务:构建图。机器人位姿作为顶点,位姿间的关系作为边;优化图。调整机器人的位姿来尽量满足边的约束,使得误差最小。
EKF和BA的区别:(1)EKF假设了马尔可夫性,k时刻的状态只与k-1时刻有关。(2)非线性优化使用所有的历史数据,全局slam。(3)EKF做了线性化处理,在工作点处用一阶泰勒展开式近似整个函数,工作点较远处不一定成立。(4)非线性优化每迭代一次,状态估计发生改变,会对新的估计点做泰勒展开。
. 总而言之,EKF可被看作是只有一次迭代的BA。

3.相机和陀螺仪之间的外参如何标定?

(1)先来说一下相机和陀螺仪(IMU)的互补作用吧:相机能够进行回环检测校正(IMU)累计误差;IMU能够校正(相机)快速运动时的模糊。
(2)相机与IMU之间的外参包括两部分:first:相机与IMU之间的相对位姿(相机坐标系和IMU坐标系之间的变换)。second:相机与IMU之间的时间差。
(3)终于开始说如何标定了:方法如下(原理不懂):一:相对位姿在线标定放法(VINS)。二:时间差在线标定方法(依旧是VINS)。
传送门:https://blog.csdn.net/electech6/article/details/95237412。

4.ORB用什么方法提取角点和描述子?

(1)先说ORB吧。Oriented FAST and Rotated BRIEF,该方法是在FAST特征检测和BRIEF特征描述子的基础上提出来的。运行时间优于SIFT和SURF,可以用于实时特征检测。
(2)所以ORB用FAST提取角点(特征点):连续N个点的灰度有明显的差异;用BRIEF提取描述子:用汉明距离度量二进制差异性。
具体讲解传送门:https://www.cnblogs.com/qiuheng/p/9274583.html

5.提取特征点的方法有几种?

. SIFT,SURF,ORB?

</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值