表示学习
表示学习的基本思路,是找到对于原始数据更好的表达,以方便后续任务(比如分类)。机器学习中,同样的数据的不同表达,会直接决定后续任务的难易程度(换言之,表示方法的选择通常依赖于后续任务的需求),因此找到好的数据表示往往是机器学习的核心任务。
特征工程与表示学习
机器学习一般有两种思路来提升原始数据的表达[1]:
- 特征学习(feature learning),又叫表示学习(representation learning)或者表征学习,一般指模型自动从数据中抽取特征或者表示的方法,是模型自动学习的过程;
- 特征工程(feature engineering),主要指对于数据的人为处理提取,得到我们认为的适合后续模型使用的样式,是人工提取的工程 (狭义的特征工程指的是“洗数据”:处理缺失值,特征选择,维度压缩等各种预处理手段,但从更广义的角度看,这些处理是为了使得数据有更好的表达以便后续应用)
传统的机器学习方法主要依赖人工特征处理与提取,而深度学习则依赖模型自身去学习数据的表示(自动抽取有效特征)。
深度学习的表示学习
输入数据经过层层网络,依次被抽取出了低级特征(low level features)比如边缘色度,中级特征(middle level features)比如纹理角点,和高级特征比如图形,然后把高度抽象化的高级特征交给最后的分类器层进行预测,从而得到分类结果。深度网络最后一层一般就是个线性分类器,比如softmax线性回归分类,深度神经网络的其他部分可以看做是为最后一层的分类器提供表征。通过层层网络抽取高度抽象化的特征,最终目的是为了帮助分类器做出良好的预测:最开始输入