深度学习总体介绍

本文探讨了机器学习的传统方法与深度学习的现代技术。从数据预处理、特征提取到选择分类器,全面覆盖了传统机器学习流程。深度学习部分深入介绍了数据准备、模型设计与训练过程,为读者提供了清晰的学习路线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课堂学习笔记

  • 传统机器学习
    • 数据预处理–归一化、降维、去躁
    • 特征提取–图像:SIFT、LBP、Fisher,语言:Word2vec、MFCC
    • 选择分类器–SVM、决策树、随机森林、贝叶斯网络、线性回归、聚类
  • 深度机器学习
    • 数据准备–数据、label
    • 设计模型–CNN、RNN
    • 训练–调结构、损失函数、训练参数
  • 基本概念
    • y=W∗X+by = W*X+by=WX+b
    • 神经元:模型的基本单位
    • 卷积核:图像处理基本算子
    • 分类
    • 回归
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王二小、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值