DL_Notebook 1_Softmax/激活函数

这篇博客介绍了线性回归、广播语义、Softmax的概念和交叉熵损失函数,以及常用的激活函数如ReLU、Sigmoid和tanh。讨论了激活函数在神经网络中的作用,特别是解决线性不可分问题的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归

线性回归理论知识blabla就不记录了,新手本人的python,pytorch陌生的东西的记录。

广播语义

  1. 一般语义 Genaral Semantics 和In-place Semantics不一样

    x与y满足可广播的四个条件:(遍历张量维度大小时,从末尾随开始遍历)
    1- both have size 1
    2- trailing dimension: y has size 1
    3- trailing dimension: x size == y size
    4- trailing dimension: y dimension doesn’t exist

    	>>> x=torch.empty(5,2,4,1)
    	>>> y=torch.empty(  3,1,1)  // 为了观看方便,对齐
    	>>> (x+y).size()                   //不能广播因为x的2和y的3不满足上面4个条件之一
    
  2. In-place语义

    In-place语义不允许in-place张量像广播那样改变形状

    pytorch官方例子:

    	>>> x=torch.empty(5,3,4,1)  
    	>>> y=torch.empty(3,1,1)
    	>>> (x.add_(y)).size()
    	torch.Size([5, 3, 4, 1])   //OK 因为x的shape不变
    
    	# but:
    	>>> x=torch.empty(1,3,1)
    	>>> y=torch.empty(3,1,7)
    	>>> (x.add_(y)).size()  // 不OK,因为in-place操作不允许x的shape改变,而这里如果广播了,x会变
    	RuntimeError: The expanded size of the tensor (1) must match the existing size (7) at non-singleton dimension 2.
    

    所以也可以说

    如果你使用了in-place operation而没有报错的话,那么你可以确定你的梯度计算是正确的。

课后习题:
在这里插入图片描述

Softmax

概念

认识softmanx:分类问题,单层神经网络,其输出: y ^ 1 = exp ⁡ ( o 1 ) ∑ i = 1 3 exp ⁡ ( o i ) , y ^ 2 = exp ⁡ ( o 2 ) ∑ i = 1 3 exp ⁡ ( o i ) , y ^ 3 = exp ⁡ ( o 3 ) ∑ i = 1 3 exp ⁡ ( o i ) \hat{y}1 = \frac{ \exp(o_1)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}2 = \frac{ \exp(o_2)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}3 = \frac{ \exp(o_3)}{\sum_{i=1}^3 \exp(o_i)} y^1=i=13exp(oi)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值