多线程实现矩阵相乘_C++

计算机执行矩阵相乘时,如果直接按照3层循环执行,会很慢。使用多线程,可以缩短时间。下面的代码先执行了不带多线程的原始版本,然后用多线程技术再执行了一遍,然后输出了他们的执行时间。

#include <iostream>
#include <vector>
#include <thread>
#include <chrono>

using namespace std;
typedef vector<vector<int>> Matrix;

// 主函数进行多线程矩阵乘法
Matrix matrixMultiplyMultiThread(const Matrix& A, const Matrix& B, int numThreads) {
    int rowsA = A.size();
    int colsA = A[0].size();
    int colsB = B[0].size();

    Matrix result(rowsA, vector<int>(colsB, 0)); // 初始化结果矩阵

    vector<thread> threads;// 创建线程
    int rowsPerThread = rowsA / numThreads;

    for (int k = 0; k < numThreads; ++k) {
        int startRow = k * rowsPerThread;
        int endRow = (k == numThreads - 1) ? rowsA : startRow + rowsPerThread; // 最后一个线程把剩下的行全处理掉

        threads.emplace_back([&result, &A, &B, &colsA, &colsB, startRow, endRow]() {
            for (int i = startRow; i < endRow; i++) {
                for (int j = 0; j < colsB; j++) {
                    for (int k = 0; k < colsA; k++) {//直接挪到最外层,可以避免cache-miss
                        result[i][j] += A[i][k] * B[k][j];
                    }
                }
            }
        });
    }

    for (auto& th : threads) {
        if (th.joinable()) { // 等待所有线程完成
            th.join();
        }
    }
    return result;
}

// 原始矩阵乘法
Matrix matrixMultiplyOrigin(const Matrix& A, const Matrix& B) {
    int rowsA = A.size();
    int colsA = A[0].size();
    int colsB = B[0].size();
    Matrix result(rowsA, vector<int>(colsB, 0)); // 初始化结果矩阵

    for (int i = 0; i < rowsA; i++) {
        for (int j = 0; j < colsB; j++) {
            for (int k = 0; k < colsA; k++) {
                result[i][j] += A[i][k] * B[k][j];
            }
        }
    }
    return result;
}

int main() {
    int sz = 1000;
    int m = sz, n = sz, p = sz; // 矩阵大小
    Matrix A(m, vector<int>(n, 1));
    Matrix B(n, vector<int>(p, 1));

    // 测试原始版本
    auto start = chrono::high_resolution_clock::now();
    Matrix C = matrixMultiplyOrigin(A, B);
    auto end = chrono::high_resolution_clock::now();
    chrono::duration<double> duration = end - start;
    cout << "Original version time: " << duration.count() << " seconds" << endl;

    // 测试多线程版本
    int numThreads = thread::hardware_concurrency(); // 获取可用线程数,我的Mac电脑是8
    cout << "numThreads is " << numThreads << endl;
    start = chrono::high_resolution_clock::now();
    C = matrixMultiplyMultiThread(A, B, numThreads);
    end = chrono::high_resolution_clock::now();
    duration = end - start;
    cout << "Multithreaded version time: " << duration.count() << " seconds" << endl;

    return 0;
}

结果是:

Original version time: 20.0384 seconds
numThreads is 8
Multithreaded version time: 5.45786 seconds

可以看到,当矩阵维度是1000时,多线程可以大大缩短矩阵乘法运算时间。

注①:线程本身的创建和销毁也是花时间的,并且操作系统能支持的线程数受硬件影响,当使用的线程数大于系统能提供的线程数时,操作系统会通过时间片轮转(时间片调度)来切换这些线程。这意味着在某一时刻,只有一部分线程可以运行,其他线程则处于等待状态。这可能会导致线程之间的竞争和上下文切换,增加 CPU 的调度开销。所以线程并不是越多效果越好。

注②:现在的版本会有cache-miss的问题,详情可以参考我的另一篇文章:矩阵相乘_重排序优化算法的C++实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码到程攻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值