transformers设置StoppingCriteria的实战代码

  大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。

  本文主要介绍了transformers设置StoppingCriteria的实战代码,希望能对学习transformers的同学们有所帮助。

1. 问题描述

  今天在进行文本生成时,总会生成一些不必要的内容,如果能够在生成不必要内容前及时停下来不仅能够得到更好的答案,而且节省了预测的时间。

  在经过了亲身的实践后,终于找到了可复现的实战代码,最终将详细的代码总结如下。希望对学习transformers的同学们有所帮助。
在这里插入图片描述
在这里插入图片描述

2. 解决方案

  为了方便大家理解,提问以who are you?为例,模型回复为
I am a 20 year old girl who is

### 关于Transformers的实际应用案例 #### 使用Hugging Face Transformers构建文本分类器 为了展示如何利用Transformers进行实际开发,下面是一个简单的例子,该实例展示了怎样通过Python编程语言中的`transformers`库创建一个用于情感分析的任务。此任务旨在判断给定的一段文字表达的是正面还是负面的情绪。 首先安装必要的软件包: ```bash pip install transformers datasets torch scikit-learn ``` 加载预训练模型并准备数据集: ```python from transformers import AutoTokenizer, Trainer, TrainingArguments, pipeline import numpy as np from sklearn.model_selection import train_test_split from datasets import load_dataset dataset = load_dataset('imdb') # 加载IMDB电影评论数据集作为样例 tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") def preprocess_function(examples): return tokenizer(examples['text'], truncation=True) encoded_dataset = dataset.map(preprocess_function, batched=True) train_set, test_set = train_test_split(encoded_dataset["train"], test_size=0.2) ``` 定义评估函数和训练参数配置: ```python training_args = TrainingArguments( output_dir='./results', evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_set, eval_dataset=test_set, ) trainer.train() ``` 完成以上步骤之后,就可以调用训练好的模型来进行预测了: ```python classifier = pipeline('sentiment-analysis', model='path_to_saved_model') result = classifier(["I love programming.", "This is so boring."]) print(result) ``` 这段代码片段说明了如何快速上手使用Transformers框架处理自然语言处理问题[^3]。
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱编程的喵喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值