
YOLOv:从理论到实践
文章平均质量分 90
YOLOv:从理论到实践 本专栏旨在为大家提供全面的 YOLOv 学习资源。无论你是初学者还是资深开发者,都能从中找到适合自己的学习路径。我们将深入分析 YOLOv 的架构、算法优化,并结合多个实际案例,帮助你快速掌握这一前沿技术。
优惠券已抵扣
余额抵扣
还需支付
¥179.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
空间机器人
不会的东西越来越多,我该怎么办。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
用YOLOv8构建自己的异常检测与预警系统
通过这篇文章,我们成功构建了一个基于YOLOv8的异常检测与预警系统。它不仅能实时监控环境,还能在检测到异常时,快速发出警报并通知相关人员,帮助我们更好地保护安全。💡 这个系统是非常基础的实现,随着你对YOLOv8的深入了解和系统的不断优化,你可以将它扩展到更多的实际应用场景中,像。原创 2025-07-31 13:35:33 · 13 阅读 · 0 评论 -
YOLO车牌识别全解析(一):从颜色统计到字符切割,一站式搞懂[特殊字符]
图像采集 → 彩色像素点统计定位车牌 → 均值滤波去噪 → 阈值分割字符 → 分割单字 → 归一化 → 识别是不是清晰很多?整套流程不但逻辑通顺,而且非常适合用 OpenCV + Python 来实战。如果你正在做一个车牌识别小项目:快速试水字符识别EasyOCR:支持中文车牌,无需训练:结合定位与识别效果更好。原创 2025-07-23 09:17:36 · 74 阅读 · 0 评论 -
一文读懂YOLO目标检测:让计算机“看”到世界
想象一下:给你一张街头照片,你能一眼点出“那是一只猫”、“那是一台电视机”,甚至还能告诉朋友“看,猫在沙发右侧偷看电视”——轻而易举,对吧?原创 2025-07-21 09:16:44 · 28 阅读 · 0 评论 -
目标检测江湖概览:从 R-CNN 到 YOLO,到底谁才是王者?
目标检测(Object Detection)= 分类 + 定位不仅要知道“是什么”,还要知道“在哪儿”!图像分类任务告诉你:图里有只猫🐱目标检测任务告诉你:图里有只猫,而且它躲在沙发左下角,位置是,如图1‑1、图1‑2🎯 所以目标检测的难度也成倍增长:你不仅要看清,还得标靶!模型检测类型是否端到端速度精度R-CNNTwo-stage❌慢高Two-stage✅中高YOLOOne-stage✅快中→高DETROne-stage+✅中高。原创 2025-07-20 22:39:32 · 26 阅读 · 0 评论 -
别再只会用 YOLOv5了!YOLOv11实例分割我都用上了,贼猛
YOLOv11 是目前 YOLO 体系里对实例分割支持最强的一代,而且易上手、快推理、还支持边部署边跑!如果你搞视觉项目不来试试 YOLOv11,那真的有点亏了!原创 2025-07-17 15:02:10 · 92 阅读 · 0 评论 -
用 YOLOv11‑Seg 做工地实例分割:从 0 起步到效果调优,真香!
这不是一篇“官方文档翻译”,而是一篇。原创 2025-07-08 15:08:35 · 130 阅读 · 0 评论 -
一口气读懂 YOLO 家族:从 v1 到 v11 究竟升级了啥?
YOLOv11给了我们“速度 + 精度 + 多任务”的组合拳数据才是王道,先把自家的摄像头数据标得漂漂亮亮小步快跑,n → s → m逐级迭代,别一上来就x烧卡。原创 2025-07-07 09:17:30 · 32 阅读 · 0 评论 -
YOLOv11全面实战解析:5款模型全拆解+物流场景实测,一文吃透性能差异!
🎯 如何根据应用场景选择合适的 YOLOv11 模型?场景推荐模型低功耗边缘设备YOLOv11-n中小型物流场景对精度要求高自动驾驶识别YOLOv11-x(需高算力)YOLOv11 全系列模型在物流车辆检测上均表现优秀通过真实数据验证,是性价比之选借助数据增强+AMP混合精度+TensorBoard监控,训练效率与精度双提升多维指标分析助你快速定位“最适合你的模型”原创 2025-07-06 10:42:29 · 52 阅读 · 0 评论 -
YOLOv8打造你的智能安防系统!动静一捕捉,自动报警+截图+邮件通知!
这就是一个YOLOv8 + Python 打造的多功能智能安防系统,不仅学到了AI,还顺带造了个实用的“保安”!原创 2025-06-25 08:51:01 · 36 阅读 · 0 评论 -
Unity+Sentis玩转YOLOv8 Nano:实时物体检测全攻略
轻量化模型YOLOv8 Nano,速度快到飞起Sentis推理引擎,集成简洁易用高效NMS,保证检测结果干净无冗余完美融合Unity UI,展示效果美观专业如果你想在Unity里加点“AI智慧”,Sentis搭配YOLOv8 Nano绝对是最佳起点!🔥最后偷偷告诉你,这套方案不仅可以做实时监控,还能用在AR互动、机器人视觉、智能安防等场景,想想就兴奋!🚗🔥。原创 2025-06-04 14:29:58 · 144 阅读 · 0 评论 -
YOLOv8物体检测速度翻倍实战:改变一行参数,FPS飙升两倍![特殊字符]
✅ 输入尺寸要根据图像比例设置,不是盲目用 640x640✅ 开启rect=True实现真正的矩形推理✅ 合理使用 FP16、TensorRT 等加速方式✅ 训练和推理阶段都要同步优化。原创 2025-06-02 18:18:22 · 145 阅读 · 0 评论 -
使用 Google Colab 高效加速 YOLO11 训练!免费GPU还不快上车?
每个搞AI、玩YOLO的同学,最怕的一件事是啥?👇模型太大,笔记本撑不住💻数据太多,显卡嘎嘎烫🔥配环境像修仙,一错重装一天🌪那有没有又简单、又快、关键还免费的训练方式?答案就是——Google Colaboratory(Colab)!今天我们就来聊聊,如何用Colab训练YOLO11,效率翻倍💯!原创 2025-06-02 18:12:51 · 110 阅读 · 0 评论 -
什么是 YOLOv8
🗂️ 数据集(如 VOC、COCO 格式)📄 一个data.yaml文件:names:0: cat1: dog🔧 安装 YOLOv8📸 检测图像中的目标🧑🏫 训练自己的模型📦 导出部署。原创 2025-06-02 18:10:49 · 39 阅读 · 0 评论 -
YOLOv进行目标检测
超市商品检测 ≠ 科幻,完全能用YOLOv11落地!准备好数据、标注、训练,轻松实现智能识别!可用于自动结账、缺货提醒、智能货架巡检等多种应用!原创 2025-05-23 23:38:36 · 58 阅读 · 0 评论 -
YOLOv11目标检测来了!到底有多强?附[特殊字符]代码实战讲解!
不是参数越多越好,而是设计得巧才重要;不是要搞得多复杂,而是要易于迁移与部署;不是为了炫技,而是为了真正解决实际问题!原创 2025-05-23 23:36:20 · 84 阅读 · 0 评论 -
YOLOv8 性能评估全解析:从 mAP 到 FPS 你都懂了么?
很多人拿到 YOLOv8 就开始训练,却忽视了它背后的设计理念。YOLOv8 采用设计,不再依赖传统的锚框,这大大提升了训练和推理速度。真正的高手,不仅要懂得如何训练模型,还要明白模型的优化方向、调参技巧、以及如何在各种平台上高效部署。从训练到部署,你只差一篇好文 + 一次完整动手实践!原创 2025-05-23 23:28:00 · 124 阅读 · 0 评论 -
一句话总结 YOLOv 的检测逻辑:
YOLOv 把整张图片当成一个网格,每个格子负责预测图中是否有目标、目标的位置和类别。YOLOv 系列是单阶段目标检测器的巅峰之作一次性从整图中回归出所有目标的类别和位置。每一代 YOLOv 都在速度、精度、适配性上不断进化,已经成为工业级实时检测的首选方案。原创 2025-05-22 12:30:57 · 60 阅读 · 0 评论 -
YOLOv8入门 | YAML配置文件详解 + 网络结构打印 + 结构图绘制全流程【小白必看[特殊字符]】
比如你觉得 YOLOv8n 太小、mAP 上不去?可以把把128改成256把C2f改成更多层把Detect输出类别从80改成你自己的类别数别怕看不懂,它不难,就像搭乐高一样,关键是动手试、打印出来看看、画张图更直观!原创 2025-05-18 15:18:20 · 117 阅读 · 0 评论 -
YOLOv8训练完了,然后呢?别再手动截图了兄弟!
如果你正在搞目标检测,千万别忽略可视化这一环节。论文图、毕业图、项目汇报,一张好图能救一整篇论文!原创 2025-05-18 15:18:04 · 67 阅读 · 0 评论 -
YOLOv8主干网络改进实战 | 提升小目标检测能力的独家结构增强方案【附结构图 + 创新讲解】
💡 应用于工业视觉(表面缺陷、小螺丝)📱 适配边缘设备部署(TX2/RK3588)📊 作为论文中模型轻量增强模块描述!原创 2025-05-18 15:17:47 · 174 阅读 · 0 评论 -
YOLOv8深度揭秘:从网络结构到性能提升,一站式解析与优化方案
YOLOv8凭借其高效的结构与强大的性能,已经成为目标检测领域的标杆。它不仅优化了传统目标检测算法的速度与精度,还通过引入Transformer等新技术,提升了模型在复杂场景下的表现。但需要注意的是,YOLOv8虽然已经非常强大,但在极端场景(例如非常复杂的背景、极小目标的检测等)下,仍有进一步提升的空间。因此,YOLOv8未来仍然会在算法优化和应用场景上不断拓展。希望这篇文章帮助你更好地理解YOLOv8的核心结构与优势。如果你对YOLOv8或目标检测有任何疑问,欢迎留言讨论,咱们一起深入探讨!💬。原创 2025-05-18 15:17:29 · 69 阅读 · 0 评论 -
进化中的YOLOv8:在恶劣天气与模糊图像中如何继续精准目标检测?
在今天的文章中,我们深入探讨了如何通过。原创 2025-05-18 15:12:49 · 67 阅读 · 0 评论 -
YOLOv8骨架换“芯”实录!EfficientNet轻装上阵,精准还更快?【教程+实战】
创建一个新的 Python 脚本,比如self.out_channels = [24, 40, 112, 1280] # 你需要根据网络层的输出通道来设置# 提取其中几层作为 YOLOv8 的特征输入🔧YOLOv8 的 Neck 通常需要多尺度特征,所以要从EfficientNet中抽出多个stage输出。创建一个backbone:args: []neck:head:args: [nc] # 类别数优点说明✅ 更轻量几乎只有原始YOLOv8参数的四分之一✅ 更适合部署。原创 2025-05-18 15:11:23 · 74 阅读 · 0 评论 -
YOLOv8主干网络改造:换上MobileNetV4!
MobileNetV4 是 Google 提出的轻量级 CNN 家族的最新一代。优点说明🚀 更快推理在嵌入式设备上表现更好💾 更少内存占用减少部署压力📱 更适合移动端超适合手机/物联网项目✅ 小白友好适合入门者尝试DIY改进你是不是也觉得「只看官方文档太无聊」?是不是也在为模型太重,设备带不动发愁?这篇文章,希望能给你一点实战上的灵感——目标检测也可以“瘦身成功”,跑得更快,飞得更远!原创 2025-05-18 15:11:07 · 141 阅读 · 0 评论 -
YOLOv8 / YOLOv10 改进实践 | 教你一键计算模型FPS【科研实测神器!复制粘贴即用】
在写论文、做实验的时候,很多小伙伴只看mAP,但其实推理速度(FPS)也是一项超级关键的指标,尤其是搞嵌入式部署边缘计算自动驾驶的同学一定懂我!今天这篇文章,咱们直接上干货——一个超实用脚本,支持你快速测试的 FPS 表现,复制 - 粘贴 - 运行,就是这么丝滑!是科研狗,想写论文有图有真相是工程猿,想知道模型上设备跑得快不快是算法爱好者,想快速对比多个模型性能这篇文章直接给你带走一份省事脚本!原创 2025-05-17 17:34:19 · 103 阅读 · 0 评论 -
YOLOv8主干网络改造 | 引入Swin Transformer的优化实践【论文级结构改进】
Swin Transformer(Shifted Window Transformer)是一种基于变换器(Transformer)的网络结构,专为计算机视觉任务设计。它通过将图像划分为窗口(window)并在这些窗口内进行自注意力计算,减少了传统全局自注意力机制的计算复杂度。此外,Swin Transformer还引入了的概念,进一步增强了模型的表达能力。通过将Swin Transformer引入YOLOv8的主干网络,我们显著提升了YOLOv8在小目标检测、长距离依赖建模等方面的表现。原创 2025-05-17 17:33:56 · 56 阅读 · 0 评论 -
优化YOLOv8:用ResBlock和CBAM轻量化目标检测,提升性能就是这么简单!
通过。原创 2025-05-17 17:33:44 · 56 阅读 · 0 评论 -
YOLOv8改进 | 主干网络 | C2f融合动态卷积模块ODConv,提升性能与效率![特殊字符]
ODConv通过动态卷积核生成机制,根据输入图像的特征动态调整卷积核,从而在每一层生成最适合当前输入特征的卷积核。而随着目标检测任务的复杂性增加,如何让主干网络在保持高效的同时提取更多有用信息,成为了优化的关键。希望大家通过这篇文章,能够获得一些新的灵感,推动自己的项目不断向前!集成C2f和ODConv之后,你可以根据实际应用调整模型的超参数,比如卷积核的大小、步长,或者是调整C2f模块和ODConv模块之间的比例。模块融合到YOLOv8中,我们能够在保证低计算成本的前提下,极大提升目标检测的精度和性能。原创 2025-05-17 17:33:28 · 89 阅读 · 0 评论 -
YOLOv8突破性改进 | 主干网络与动态卷积优化 | ⭐探索未来目标检测新星辰⭐
随着YOLOv8的推出,目标检测领域的星空越来越宽广,然而,随着应用场景的不断扩展,传统的YOLOv8仍然面临着一些挑战,尤其是在极端天气、低光环境以及模糊图像中的表现。因此,作为一款不断进化的检测模型,我们要对其主干网络进行深入的优化,使其能够在不同的“天候”条件下,继续闪耀光芒,确保每一颗“星星”都能被精准捕捉。而且,这次的改进不仅仅是为了提高精度,更是针对一些极限场景进行的大胆尝试——让YOLOv8在目标检测的“星辰大海”中自由翱翔,突破所有瓶颈,书写属于它的辉煌篇章!原创 2025-05-17 17:33:08 · 43 阅读 · 0 评论 -
YOLOv8主干网络改进实战 | 把Backbone换成轻量级的ShuffleNetv2【原理 + 教程 】
YOLOv8虽然强,但默认主干还是偏重;如果想部署到边缘设备(树莓派、TX2、嵌入式板子),FPS直接拉胯;做科研项目,能省参数就省,能快一点就快一点,哪怕mAP掉一点点也值!这时候,咱们就可以动手给YOLOv8换一套轻装上阵的骨架!!✅ 为什么要换 YOLOv8 主干网络✅ ShuffleNetv2 的核心原理✅ 完整代码 + YAML 配置改法✅ 真实部署实测对比📮🔧 帮你改 YOLOv8 的PAN结构📉 自动记录每轮FPS + mAP + 参数量的训练脚本。原创 2025-05-17 17:32:46 · 78 阅读 · 0 评论 -
YOLOv8模块缝合 | C2f融合PPA注意力机制,实现轻量高效检测升级【完整代码 + 独家改进】
YOLOv8作为轻量级目标检测代表,其默认模块C2f具有结构简洁、速度快、表达力尚可等优点。但随着小目标、密集场景、复杂背景需求激增,**“Attention缺位”**逐渐成为性能瓶颈。于是,我们尝试把PPA(Progressive Position Attention)模块融入到C2f结构中,打造出新一代轻量、精准、可迁移的模块结构!将PPA模块融合进C2f,是一次兼顾性能与效率的轻量级改造。对YOLOv8工程实践者而言:✅ 改动小 → 易部署✅ 效果强 → 可进论文✅ 结构优 → 易解释。原创 2025-05-17 17:32:31 · 26 阅读 · 0 评论 -
YOLOv8 还能更强?试试融合 Self-Attention 的正确姿势!【附完整代码教程】
有时候模型性能不提升,不是你调参调得不够猛,而是缺少“看重点的能力”。Self-Attention 就是那双能洞察图像灵魂的眼睛!如果你也在调 YOLOv8,不妨从主干下手,加点“小心思”!🌱。原创 2025-05-11 12:19:13 · 296 阅读 · 0 评论 -
YOLOv8加速实战:用 LDConv 轻松替换 Conv,速度性能两开花!【附完整代码】
LDConv,全称Lightweight Depthwise Convolution(轻量深度卷积)self.act = nn.SiLU() # 替代 ReLU,YOLOv8 默认激活函数。原创 2025-05-11 12:18:57 · 73 阅读 · 0 评论 -
YOLOv8目标检测再升级!全新损失函数EIoU、SIoU、AlphaIoU、Focal-EIoU逐个上,精度暴涨不是梦!
分别解包# 中心距离惩罚# 宽高差异惩罚# 最小外接框宽高# IoU计算📌可将上述类集成到中的BBoxLoss模块内。原创 2025-05-11 12:18:32 · 134 阅读 · 0 评论 -
YOLOv8改进 | 主干网络 | 将Backbone替换为Swin Transformer结构【论文必备+实战教程+代码讲解】
本教程完成了YOLOv8主干替换为Swin Transformer的全过程,实现了更高的mAP和小目标检测性能。非常适合作为论文中的“Backbone创新”章节,或作为项目的精度优化方向。原创 2025-05-11 12:18:20 · 195 阅读 · 0 评论 -
YOLOv8模块缝合 | 升级C2f:加入RVB + EMA注意力,来波二次结构爆改!【附结构图 + 实战代码】
YOLOv8 的灵魂 Backbone 模块之一就是我们熟悉的C2f,它是一种轻量化、延续 CSPNet 精神的特征融合结构,但——🧨“C2f 没 Attention,是不是有点吃亏了?💡“是不是可以搞个融合 Attention 的二次升级?🛠️“能不能把 RVB + EMA 注意力模块缝进 C2f?搞个二次融合?答案是:当然可以!而且效果还挺炸。原创 2025-05-11 12:18:04 · 177 阅读 · 0 评论 -
YOLOv8模块缝合 | C2f融合PPA注意力机制,实现轻量高效检测升级【完整代码 + 独家改进】
YOLOv8作为轻量级目标检测代表,其默认模块C2f具有结构简洁、速度快、表达力尚可等优点。但随着小目标、密集场景、复杂背景需求激增,**“Attention缺位”**逐渐成为性能瓶颈。于是,我们尝试把PPA(Progressive Position Attention)模块融入到C2f结构中,打造出新一代轻量、精准、可迁移的模块结构!将PPA模块融合进C2f,是一次兼顾性能与效率的轻量级改造。对YOLOv8工程实践者而言:✅ 改动小 → 易部署✅ 效果强 → 可进论文✅ 结构优 → 易解释。原创 2025-05-11 12:17:45 · 101 阅读 · 0 评论 -
YOLO11进化论 | 用C3k2模块缝合小波卷积,解锁边缘纹理检测新姿势【双融合策略 + 完整代码】
小波卷积是将图像信号进行多尺度频域分解,提取出低频结构特征 + 高频纹理细节,核心思路来源于离散小波变换(DWT)。🧠 更强的边缘建模能力(尤其在低清晰图像下)📉 特征降冗余,有效压缩无效信息⚡ 结构轻量,适合部署在轻量化目标检测模型中。原创 2025-05-11 12:17:28 · 270 阅读 · 0 评论 -
YOLOv8改进 | C2f 融合多尺度表征模块,构建统一检测骨架【含 OD/RT-DETR/OBB 配套yaml】
传统的卷积堆叠只能看局部,MSRM模块让模型从不同尺度理解图像结构,再由C2f统一汇聚。模块缝合的威力,在这里完全释放!原创 2025-05-11 12:17:16 · 104 阅读 · 0 评论 -
YOLOv8改进 | 融合改进 | C2f融合Faster-GELU模块提升检测速度【完整代码 + 主要代码解析】
GELU作为一种常见的激活函数,其优点在于提供了平滑的非线性映射,但由于其数学计算过程复杂(涉及误差函数的计算),使得计算性能较差。在中,我们通过近似计算和并行化优化,有效减少了计算量。Faster-GELU 保持了 GELU 的特性,同时提高了计算效率。通过将Faster-GELU模块融入C2f结构中,我们成功在YOLOv8中实现了计算效率与检测精度的双重提升。这种方法不仅适用于高效能硬件,也能在较低资源的设备上提供更好的实时性能。Faster-GELU模块的并行化处理,进一步加速推理速度。结合。原创 2025-05-06 22:17:59 · 92 阅读 · 0 评论