
AI论文解读
文章平均质量分 96
我对一些AI论文的解读,包括精读、泛读、和总结。该专栏文章始于2024年9月29日。
AI完全体
复旦本硕,腾讯前码农,本科材料,硕士金融,自学IT。24年8月下旬我对自己过去的人生经历进行了深刻反思并全程发布在朋友圈,经过慎重考虑之后决定开始人生最后一次转行,目前正在全力以赴自学和求职AI中,该博客将记录我的完整转行过程和AI修炼之路。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【AI论文精读7】GraphRAG
GraphRAG 论文精读原创 2025-06-10 18:40:07 · 1103 阅读 · 0 评论 -
【AI论文精读6】SELF-RAG(23.10)P3(完)
论文精读:该论文训练了一个单一的语言模型,该模型能够根据需要自适应地进行段落检索。在多项任务上显著超越了当时最新的大型语言模型和检索增强模型。我前面读的两篇RAG综述论文都提到了它。它是我后面要读的一篇RAG论文的重要基础。代码和模型开源,且附录部分有对实验部分的详细说明,方便学习和参考。这是我对第3部分的解读。原创 2024-10-21 15:43:34 · 1449 阅读 · 0 评论 -
【AI论文精读6】SELF-RAG(23.10)P2
论文精读:该论文训练了一个单一的语言模型,该模型能够根据需要自适应地进行段落检索。在多项任务上显著超越了当时最新的大型语言模型和检索增强模型。我前面读的两篇RAG综述论文都提到了它。它是我后面要读的一篇RAG论文的重要基础。代码和模型开源,且附录部分有对实验部分的详细说明,方便学习和参考。这是我对第2部分的解读。原创 2024-10-19 20:49:13 · 1341 阅读 · 1 评论 -
【AI论文精读6】SELF-RAG(23.10)附录
论文精读:该论文训练了一个单一的语言模型,该模型能够根据需要自适应地进行段落检索。在多项任务上显著超越了当时最新的大型语言模型和检索增强模型。我前面读的两篇RAG综述论文都提到了它。它是我后面要读的一篇RAG论文的重要基础。代码和模型开源,且附录部分有对实验部分的详细说明,方便学习和参考。这是论文的附录部分。原创 2024-10-19 20:45:55 · 1366 阅读 · 0 评论 -
【AI论文精读6】SELF-RAG(23.10)P1
论文精读:该论文训练了一个单一的语言模型,该模型能够根据需要自适应地进行段落检索。在多项任务上显著超越了当时最新的大型语言模型和检索增强模型。我前面读的两篇RAG综述论文都提到了它。它是我后面要读的一篇RAG论文的重要基础。代码和模型开源,且附录部分有对实验部分的详细说明,方便学习和参考。这是第1部分。原创 2024-10-18 14:07:16 · 1505 阅读 · 0 评论 -
【AI论文精读5】知识图谱与LLM结合的路线图-P4(完)
该论文提出了一个将大型语言模型(LLMs)与知识图谱(KGs)相结合的路线图。这是我对论文第4部分(完)的解读。原创 2024-10-17 16:13:50 · 1591 阅读 · 0 评论 -
【AI论文精读5】知识图谱与LLM结合的路线图-P3
该论文提出了一个将大型语言模型(LLMs)与知识图谱(KGs)相结合的路线图。这是我对论文第3部分的解读。原创 2024-10-16 21:15:42 · 1433 阅读 · 0 评论 -
【AI论文精读5】知识图谱与LLM结合的路线图-P2
该论文提出了一个将大型语言模型(LLMs)与知识图谱(KGs)相结合的路线图。这是我对论文第2部分的解读。原创 2024-10-14 21:40:53 · 2214 阅读 · 0 评论 -
【AI论文精读5】知识图谱与LLM结合的路线图-P1
该论文提出了一个将大型语言模型(LLMs)与知识图谱(KGs)相结合的路线图。这是我对论文第1部分的解读。原创 2024-10-13 23:15:43 · 1695 阅读 · 0 评论 -
【AI论文精读4】RAG论文综述2(微软亚研院 2409)P6(完)-隐含推理查询L4
这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第6部分(完)的解读。原创 2024-10-13 12:32:11 · 855 阅读 · 0 评论 -
【AI论文精读4】RAG论文综述2(微软亚研院 2409)P5-可解释推理查询L3
这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第5部分的解读。原创 2024-10-12 23:45:13 · 1254 阅读 · 0 评论 -
【AI论文精读4】RAG论文综述2(微软亚研院 2409)P4-隐性事实查询L2
这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第4部分的解读。原创 2024-10-12 17:53:58 · 1482 阅读 · 0 评论 -
【AI论文精读4】RAG论文综述2(微软亚研院 2409)P3-显性事实查询L1
这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第3部分的解读。原创 2024-10-12 12:35:25 · 1506 阅读 · 0 评论 -
【AI论文精读4】RAG论文综述2(微软亚研院 2409)P2-问题定义
这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第2部分的解读。原创 2024-10-11 18:16:19 · 1258 阅读 · 0 评论 -
【AI论文精读4】RAG论文综述2(微软亚研院,2409)-P1
这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第1部分的解读。原创 2024-10-11 15:25:38 · 1749 阅读 · 0 评论 -
【AI论文精读3】RAG论文综述1-P6(完)-讨论与未来展望
这篇综述论文对RAG在大型语言模型中的应用进行了全面总结,覆盖了如何通过检索增强大规模语言模型的能力,并讨论了不同类型的检索机制及其优化策略。适合对RAG的最新发展进行深入了解。这是我对论文第6部分(完)的解读。原创 2024-10-11 00:30:15 · 1250 阅读 · 0 评论 -
【AI论文精读3】RAG论文综述1-P5-任务与评估
这篇综述论文对RAG在大型语言模型中的应用进行了全面总结,覆盖了如何通过检索增强大规模语言模型的能力,并讨论了不同类型的检索机制及其优化策略。适合对RAG的最新发展进行深入了解。这是我对论文第5部分的解读。原创 2024-10-10 22:06:27 · 1392 阅读 · 1 评论 -
【AI论文精读3】RAG论文综述1-P4-生成和增强
这篇综述论文对RAG在大型语言模型中的应用进行了全面总结,覆盖了如何通过检索增强大规模语言模型的能力,并讨论了不同类型的检索机制及其优化策略。适合对RAG的最新发展进行深入了解。这是我对第4部分的解读。原创 2024-10-10 16:11:32 · 1315 阅读 · 0 评论 -
【AI论文精读3】RAG论文综述1-P3-检索器
这篇综述论文对RAG在大型语言模型中的应用进行了全面总结,覆盖了如何通过检索增强大规模语言模型的能力,并讨论了不同类型的检索机制及其优化策略。适合对RAG的最新发展进行深入了解。这是我对论文第3部分的解读。原创 2024-10-09 18:00:22 · 1320 阅读 · 0 评论 -
【AI论文精读3】RAG论文综述1-P2-RAG概览
这篇综述论文对RAG在大型语言模型中的应用进行了全面总结,覆盖了如何通过检索增强大规模语言模型的能力,并讨论了不同类型的检索机制及其优化策略。适合对RAG的最新发展进行深入了解。这是我对论文第2部分的解读。原创 2024-10-09 00:24:27 · 1827 阅读 · 0 评论 -
【AI论文精读3】RAG论文综述1-P1
这篇综述论文对RAG在大型语言模型中的应用进行了全面总结,覆盖了如何通过检索增强大规模语言模型的能力,并讨论了不同类型的检索机制及其优化策略。适合对RAG的最新发展进行深入了解。这是我对第1部分的解读。原创 2024-10-08 19:31:58 · 1427 阅读 · 0 评论 -
【AI论文精读2】RAG的重要基础DPR(Dense Passage Retrieval for Open-Domain Question Answering)
本论文首次提出了稠密段落检索技术(DPR,Dense Passage Retrieval),是RAG(检索增强生成)的重要基础。这是我对该论文的详细解读。原创 2024-10-03 20:57:50 · 4368 阅读 · 0 评论 -
【AI论文精读1】RAG原始论文-针对知识密集型NLP任务的检索增强生成
AI论文精读:针对知识密集型NLP任务的检索增强生成(RAG原始论文)。该论文是RAG的开山之作,提出了一种新的模型架构,将检索和生成结合在一起,以解决预训练模型在知识密集型自然语言处理任务中的局限性。原创 2024-09-29 23:15:22 · 6754 阅读 · 3 评论