函数的重载,重写,重定义

转载:
https://blog.csdn.net/wk_bjut_edu_cn/article/details/81001158

函数重载(overload)
函数重载是指在一个类中声明多个名称相同但参数列表不同的函数,这些的参数可能个数或顺序,类型不同,但是不能靠返回类型来判断。特征是:
(1)相同的范围(在同一个作用域中);
(2)函数名字相同;
(3)参数不同;
(4)virtual 关键字可有可无(注:函数重载与有无virtual修饰无关);
(5)返回值可以不同;

函数重写(也称为覆盖 override)
函数重写是指子类重新定义基类的虚函数。特征是:

(1)不在同一个作用域(分别位于派生类与基类);
(2)函数名字相同;
(3)参数相同;
(4)基类函数必须有 virtual 关键字,不能有 static 。
(5)返回值相同,否则报错;
(6)重写函数的访问修饰符可以不同;

重载与覆盖的区别:

(1)覆盖是子类和父类之间的关系,是垂直关系;重载是同一个类中不同方法之间的关系,是水平关系;

(2)覆盖要求参数列表相同,重载要求参数列表不同;覆盖要求返回类型相同,重载则不要求;

(3)覆盖关系中,调用方法体是根据对象的类型(基类类型还是派生类类型)来决定的,重载关系是根据调用时的实参表与形参表来选择方法体的。

重定义(也称隐藏)
(1)不在同一个作用域(分别位于派生类与基类) ;
(2)函数名字相同;
(3)返回值可以不同;
(4)参数不同。此时,不论有无 virtual 关键字,基类的函数将被隐藏(注意别与重载以及覆盖混淆);

(5)参数相同,但是基类函数没有 virtual关键字。此时,基类的函数被隐藏(注意别与覆盖混淆);

代码例子:

#include <iostream>
using namespace std;
 
class Base
{
public:
	void a()
	{
		cout << "void Base::a()" << endl;
	}
	//重载了上面的void a()函数,发生在同一个类中
	void a(int i)
	{
		cout << "void Base::a(int i)" << endl;
	}
	virtual void b()
	{
		cout << "virtual void Base::b()" << endl;
	}
	virtual void c()
	{
		cout << "virtual void Base::c()" << endl;
	}
	virtual void d()
	{
		cout << "virtual void Base::d()" << endl;
	}
private:
	int x;
};
class Derived :public Base {
public:
	//在基类Base中,函数a不是虚函数,所以这里是重定义
	void a()
	{
		cout << "void Derived::a()" << endl;
	}
	//参数不同。此时,不论无论有无virtual 关键字,基类的函数将被隐藏,属于重定义
	void b(float f)
	{
		cout << "virtual void Derived::b(float f)" << endl;
	}
	/*
	//编译器报错,也就是说编译器认为函数名和参数都与基类的虚函数c相同,那么返回值也必须相同
	//要么,你就别让编译期认为这是多态,也就是别和基类设置一样的函数名或参数,改变其一即可
	float c()
	{
		cout << "virtual float Derived::c()" << endl;
		return 1.1;
	}
	*/
	//父类中定义了虚函数,子类与父类函数名字相同,参数相同,返回值相同,属于函数重写
	void d()
	{
		cout << "virtual void Derived::d()" << endl;
	}
};
int main()
{
	int i = 6;
	float f = 'a';
	Base base;
	base.a();
	base.a(i);
	base.b();
	base.c();
	base.d();
	Derived derived;
	derived.a();
	derived.b(f);
	derived.d();
	system("pause");
	return 0;
}
### 回答1: GMM-EM算法的伪代码:// 迭代k次 for (k=0; k<K; k++) { // E步骤 // 计算每个样本属于每个模型的概率 for (i=0; i<N; i++) { for (j=0; j<M; j++) { p[i][j] = pi[j]*Gaussian(x[i],mu[j],sigma[j]); } } // 计算每个样本属于每个模型的期望值 for (i=0; i<N; i++) { for (j=0; j<M; j++) { q[i][j] = p[i][j]/sigma[j]; } } // M步骤 // 更新模型参数 for (j=0; j<M; j++) { pi[j] = pi[j] + q[i][j]; mu[j] = mu[j] + q[i][j]*x[i]; sigma[j] = sigma[j] + q[i][j]*(x[i] - mu[j])*(x[i] - mu[j]); } } ### 回答2: GMM-EM(高斯混合模型期望最大化)算法是一种用于估计高斯混合模型参数的迭代优化算法。下面是GMM-EM算法的伪代码: 输入:观测数据X,高斯分量个数K 输出:高斯混合模型的参数 1. 初始化高斯混合模型参数: - 初始化每个高斯分量的均值向量mu_k,协方差矩阵sigma_k和混合系数pi_k - 使用随机值或者其他预设的初始值进行初始化 2. 迭代优化: - 重复以下步骤,直到收敛: 1. Expectation 步骤: - 计算每个样本属于每个高斯分量的后验概率gamma(z_{nk}),即样本x_n由高斯分量k生成的概率 - 使用当前的参数值计算gamma(z_{nk}),即根据当前参数估计后验概率 2. Maximization 步骤: - 更新均值向量mu_k: - 对于每个高斯分量k,计算新的均值mu_k: - mu_k = (sum_n(gamma(z_{nk})*x_n)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和 - 更新协方差矩阵sigma_k: - 对于每个高斯分量k,计算新的协方差矩阵sigma_k: - sigma_k = (sum_n(gamma(z_{nk})*(x_n - mu_k)*(x_n - mu_k).T)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和,.T表示矩阵的转置操作 - 更新混合系数pi_k: - 对于每个高斯分量k,计算新的混合系数pi_k: - pi_k = sum_n(gamma(z_{nk})) / N 其中,sum_n表示对所有样本求和,N为样本总数 3. 返回最终的高斯混合模型参数 GMM-EM算法通过交替进行Expectation步骤和Maximization步骤,迭代地优化高斯混合模型的参数,直到收敛到最优参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值