不使用Sequential
import torch
from torch import nn
import torchvision
from torch.nn import Conv2d, MaxPool2d, ReLU, Linear, Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2)
self.maxpool1 = MaxPool2d(kernel_size=2)
self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2)
self.maxpool2 = MaxPool2d(kernel_size=2)
self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
self.maxpool3 = MaxPool2d(kernel_size=2)
self.flatten = Flatten()
self.linear1 = Linear(in_features=1024, out_features=64)
self.linear2 = Linear(in_features=64, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
module = MyModule()
print(module)
input = torch.ones((64, 3, 32, 32))
output = module(input)
print(output.shape)
使用Sequential
import torch
from torch import nn
import torchvision
from torch.nn import Conv2d, MaxPool2d, ReLU, Linear, Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.module1 = nn.Sequential(
Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Flatten(),
Linear(in_features=1024, out_features=64),
Linear(in_features=64, out_features=10)
)
def forward(self, x):
x = self.module1(x)
return x
module = MyModule()
print(module)
input = torch.ones((64, 3, 32, 32))
output = module(input)
print(output.shape)
writer = SummaryWriter("./logs_seq")
writer.add_graph(module, input)
writer.close()
通过该命令在tensorboard中查看
tensorboard --logdir=logs_seq
参考地址:https://www.bilibili.com/video/BV1hE411t7RN?p=22