使用Sequential

本文详细介绍了如何在PyTorch中构建一个不依赖Sequential模块的卷积神经网络模型,包括定义各层结构,数据输入和输出形状,以及使用TensorBoard可视化模型。对比了使用Sequential和自定义模块的方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不使用Sequential

import torch
from torch import nn
import torchvision
from torch.nn import Conv2d,  MaxPool2d, ReLU, Linear, Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter



class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2)
        self.maxpool1 = MaxPool2d(kernel_size=2)
        self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2)
        self.maxpool2 = MaxPool2d(kernel_size=2)
        self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
        self.maxpool3 = MaxPool2d(kernel_size=2)
        self.flatten = Flatten()
        self.linear1 = Linear(in_features=1024, out_features=64)
        self.linear2 = Linear(in_features=64, out_features=10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

module = MyModule()
print(module)

input = torch.ones((64, 3, 32, 32))
output = module(input)
print(output.shape)

使用Sequential

import torch
from torch import nn
import torchvision
from torch.nn import Conv2d,  MaxPool2d, ReLU, Linear, Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter



class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.module1 = nn.Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Flatten(),
            Linear(in_features=1024, out_features=64),
            Linear(in_features=64, out_features=10)
        )

    def forward(self, x):
        x = self.module1(x)
        return x

module = MyModule()
print(module)

input = torch.ones((64, 3, 32, 32))
output = module(input)
print(output.shape)

writer = SummaryWriter("./logs_seq")
writer.add_graph(module, input)
writer.close()

通过该命令在tensorboard中查看

tensorboard --logdir=logs_seq

参考地址:https://www.bilibili.com/video/BV1hE411t7RN?p=22

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值