pytorch:固定部分层参数,固定单个模型

本文介绍了一种基于ResNet的注意力机制模型,并详细解释了如何通过冻结部分层参数来优化模型训练过程。此外还介绍了如何为模型的不同层设置不同的学习率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

固定部分层参数

class RESNET_attention(nn.Module):
    def __init__(self, model, pretrained):
        super(RESNET_attetnion, self).__init__()
        self.resnet = model(pretrained) # 这个model被固定
        for p in self.parameters():
            p.requires_grad = False
        self.f = nn.Conv2d(2048, 512, 1)
        self.g = nn.Conv2d(2048, 512, 1)
        self.h = nn.Conv2d(2048, 2048, 1)
        self.softmax = nn.Softmax(-1)
        self.gamma = nn.Parameter(torch.FloatTensor([0.0]))
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.resnet.fc = nn.Linear(2048, 10)

但是注意需要在optimizer中添加上这样的一句话
filter(lambda p: p.requires_grad, model.parameters())。

optimer =

固定指定层的参数

for k,v in model.named_parameters():
     if k.startswith ='XXX':
         v.requires_grad=False#固定参数

不同层设置不同的学习率

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值