Pytorch Load Dataset 多线程加载读取数据

本文探讨了Pytorch中使用DataLoader进行多线程加载数据对GPU性能的影响。通过设置不同的num_workers参数,观察到在加载agnewsdataset时,尽管加载时间有所减少,但对GPU处理时间的改善有限,表明在GPU受限的情况下,优化主要在于数据预处理和流水线设计。同时,文章提及在多GPU环境中,可以考虑并行处理数据以提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch Load Dataset 多线程加载读取数据

单线程读取数据时

以agnews dataset为例,num_worker=1时读取时间如下:

Load Test Data Spends 12.183895587921143 seconds
Load Test Data Spends 200.42685055732727 seconds

DataLoader(dataset, num_workers=2,collate_fn=collate_fn)

Load Test Data Spends 11.577017307281494 seconds
Load Train Data Spends 199.58622908592224 seconds

DataLoader(dataset, num_workers=4,collate_fn=collate_fn)

Load Test Data Spends 11.68491816520691 seconds
Load Train Data Spends 183.27479600906372 seconds

DataLoader(dataset, num_workers=8,collate_fn=collate_fn)

Load Test Data Spends 11.205335140228271 seconds
Load Train Data Spends 183.1354115009308 seconds

此时限制为GPU,CPU加载的矩阵→\rightarrowGPU流水线。流水线处理时间是定死的。

GPU多卡:

  • 真2014

    多个GPU一起处理2014条数据。

  • 假1024

    多块GPU按块各处理总数据的一部分,最后汇总算loss平均值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值