
神经网络
weixin_43576422
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
循环神经网络 – Recurrent Neural Network | RNN
卷积神经网络CNN已经足够强大,为什么还需要RNN?RNN的独特价值卷积神经网络 – CNN 和普通的算法大部分都是输入和输出的一一对应,也就是一个输入得到一个输出。不同的输入之间是没有联系的。比如下图中的X1和X2互换一下位置,对结果是没有任何影响的。可是还存在这样场景,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。如白雪和雪白就是两种不同的意思。基于序列的模型可以用在很多领域中。在音乐中,一首曲子的下一个音符肯定取决于前面的音符,而在视频领域,电影中的下一帧肯定原创 2020-11-25 17:38:37 · 255 阅读 · 0 评论 -
深度学习需要的一些基本的数学基础解析
数学基础总结了深度学习中可能涉及的有关线性代数、微分和概率的基础知识。为避免赘述,本节中的少数定义稍有简化。1 线性代数下⾯分别概括了向量、矩阵、运算、范数、特征向量和特征值的概念。向量这里的向量指的是列向量。⼀个n维向量x的表达式可写成x=[x1x2...xn], x=\begin{bmatrix}x_1 \\ x_2 \\... \\x_n \end{bmatrix}, x=⎣⎢⎢⎡x1x2...xn⎦⎥⎥⎤,其中x1, . . . , xn是向量的元素。我们原创 2020-05-28 11:53:47 · 588 阅读 · 1 评论 -
从深度神经网络(DNN)到卷积神经网络(CNN)
从深度神经网络(DNN)到卷积神经网络(CNN)新手向,你只需掌握一点初中数学就差不多了一个神经元长这样:X叫神经元的输入,Y叫神经元的输出,W叫神经元的权值(权重)θ: 表示偏置(截距项,阈值)f : 激活函数(激励函数)激活函数:激活函数(Activation functions)对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有十分重要的作用。它们将非线性特性引入到我们的网络中。如图1,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个原创 2020-05-16 18:10:39 · 2694 阅读 · 0 评论 -
拥抱人工智能--机器学习(附python代码)
拥抱机器学习文章来自于云栖社区目录拥抱机器学习 1机器学习算法:是使计算机具有智能的关键 下面我们将选取几种常见的算法,一一介绍。线性回归:找到一条直线来预测目标值逻辑回归:找到一条直线来分类数据K-近邻:用距离度量最相邻的分类标签朴素贝叶斯:选择后验概率最大的类为分类标签决策树:构造一棵熵值下降最快的分类树支持向量机(SVM):构造超平面,分类非线性数据K-means:计算质心,聚类无标签数据关联分析:挖掘啤酒与尿布(频繁项集)的关联规则PCA降维:减少数据维度,降低数据复杂原创 2020-05-15 19:59:51 · 2121 阅读 · 0 评论