移动机器人运动规划(六)--软约束和硬约束下的轨迹优化

本文深入探讨了移动机器人在软约束和硬约束条件下的轨迹优化技术。硬约束优化如基于走廊的轨迹优化和贝塞尔曲线优化,确保轨迹在全局约束下高效可行。软约束优化通过距离基方法将轨迹推向安全区域,但易受目标函数设计影响。案例研究中介绍了快 planner 的应用,强调了初值选择和优化策略的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程的难度是越来越大的,本节课介绍软约束和硬约束下的轨迹优化。
在这里插入图片描述

Introduction

在这里插入图片描述

在这里插入图片描述
加“推力”(软约束);在可通行区域内加“约束 ”(硬约束);

在这里插入图片描述
硬约束:在全局条件下满足s.t约束;
软约束:倾向于实现所加的约束;

Hard-constrained Optimization

Corridor-based Trajectory Optimization(基于走廊的轨迹优化)

在这里插入图片描述
首先将环境表达成八叉树的栅格地图;然后搜寻轨迹;之后将可通行栅格进行膨胀(用方块进行膨胀的原因一是八叉树本来就是用方块表达;二

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值