矩阵快速幂及其应用

本文介绍了矩阵乘法,包括矩阵的认识、加减运算和乘法规则,强调矩阵乘法的条件。接着讲解了矩阵快速幂,指出其适用于方阵,并给出计算模板。最后讨论了矩阵乘法在解决递推问题上的高效应用,如斐波那契数列,通过矩阵快速幂将复杂度降至O(logn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一.矩阵乘法

1.认识矩阵

2.矩阵的加减运算

3.矩阵乘法

二.矩阵快速幂

三.矩阵乘法的应用


一.矩阵乘法

1.认识矩阵

        矩阵就是一个数字阵列,一个i行j列的矩阵可以表示为:

        \begin{bmatrix} a_{1,1}&a_{1,2} &... &a_{1,j} \\ a_{2,1} &a_{2,2} &... &a_{2,j} \\ ...& & & \\ a_{i,1}& a_{i,2} & ... &a_{i,j} \end{bmatrix}

        看这个样子,是不是特别像一个表,所以这个东西,我们可以将其抽象为二维数组进行理解

        同时,还有一种称之为方阵的矩阵,也就是这个矩阵是个正方形,也就是i=j,例如这个3*3的矩阵:

           \begin{bmatrix} 1 & 4 &3 \\ 2 & 4& 6\\ 9&7 & 6 \end{bmatrix}

        这个也就是后面我们会讲到的矩阵快速幂的基本元素和条件,否则无法使用,后面我们会提到。

        接下来再来介绍一个叫做单位矩阵的东西,这个在今天这里用处不是很明显,但是它本身是一个比较特殊的存在,单位单位,就像是数乘中的‘1’,或者说是向量中的单位向量一样。因为这个东西不是我们今天的重点,这里只举一个单位矩阵:

        \begin{bmatrix} 1 &0 & 0 & 0 & 0\\ 0& 1 &0 & 0 &0 \\ 0& 0& 1& 0& 0\\ 0& 0 & 0 & 1 &0 \\ 0& 0& 0& 0 & 1 \end{bmatrix}

2.矩阵的加减运算

        这件事情相当好理解,就是两个矩阵A和B对应的位置分别相加或相减,最后新生成的矩阵C就是这两个矩阵的和或者差,就像下面这样:

                                    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值