package demo3;
/**
* @author xianyu
* @version 1.0
* @date 2020/4/10 15:52
* // 动态规划01背包问题
*/
public class DynamicProgramming {
public static void main(String[] args) {
// int[] weight = {2,3,4,5,9};
// int[] value = {3,4,5,8,10};
// int[] num = {1,1,1,1,1};
int[] weight = {3,4,2,5};
int[] value = {2,3,2,3};
int[] num = {2,2,1,4};
int n = weight.length;
int capacity = 10;
//ZeroOneKnapsack1(weight,value,n,capacity);
//completeKnapsack(weight,value,n,capacity);
multiKnapsack(weight,value,num,n,capacity);
}
// weight物品重量 value物品价格 n商品数目 capacity表示背包容量
public static void ZeroOneKnapsack1(int[] weight,int[] value,int n,int capacity){
// 初始化动态规划数组
int[][] dp = new int[n+1][capacity+1];
// 为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
for(int i=1; i<n+1; i++){
for(int j=1; j<capacity+1; j++){
//如果第i件物品的重量大于背包容量j,则不装入背包
//由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]
if(weight[i-1]>j){
dp[i][j] = dp[i-1][j];
} else {
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i-1]]+value[i-1]);
}
}
}
int maxValue = dp[n][capacity];
//则容量为V的背包能够装入物品的最大值为
System.out.println(maxValue);
//逆推找出装入背包的所有商品的编号
int curCapacity = capacity;
String numStr = "";
for(int i=n; i>0; i--){
// 如果dp[i][curCapacity]>dp[i-1][curCapacity], 说明第i件物品是放入背包的
if(dp[i][curCapacity]>dp[i-1][curCapacity]){
numStr = i + " " + numStr;
curCapacity = curCapacity-weight[i-1];
}
if(curCapacity==0)
break;
}
System.out.println(numStr);
}
// 01背包问题的优化
// 只用一个一维数组记录状态,dp[i]表示容量为i的背包所能装入物品的最大价值
// 用逆序来实现
public static void ZeroOneKnapsack2(int[] weight,int[] value,int n,int capacity){
int[] dp = new int[capacity+1];
for(int i=1;i<n+1; i++){
// 逆序实现
for(int j=capacity; j>=weight[i-1]; j--){
dp[j] = Math.max(dp[j-weight[i-1]]+value[i-1],dp[j]);
}
}
System.out.println(dp[capacity]);
}
/*
* 第二类背包:完全背包
* 思路分析:
* 01背包问题是在前一个子问题(i-1种物品)的基础上来解决当前问题(i种物品),
* 向i-1种物品时的背包添加第i种物品;而完全背包问题是在解决当前问题(i种物品)
* 向i种物品时的背包添加第i种物品。
* 推公式计算时,f[i][y] = max{f[i-1][y], (f[i][y-weight[i]]+value[i])},
* 注意这里当考虑放入一个物品 i 时应当考虑还可能继续放入 i,
* 因此这里是f[i][y-weight[i]]+value[i], 而不是f[i-1][y-weight[i]]+value[i]。
*/
public static void completeKnapsack(int[] weight,int[] value,int n,int capacity){
// 初始化动态规划数组
int[][] dp = new int[n+1][capacity+1];
for (int i = 1; i < n+1; i++) {
for (int j = 1; j < capacity+1; j++) {
if(weight[i-1] > j){
dp[i][j] = dp[i-1][j];
} else {
dp[i][j] = Math.max(dp[i-1][j],dp[i][j-weight[i-1]]+value[i-1]);
}
}
}
int maxValue = dp[n][capacity];
System.out.println(maxValue);
int curCapacity = capacity;
String numStr = "";
for(int i = n; i > 0; i--){
while(dp[i][curCapacity]>dp[i-1][curCapacity]){
numStr = i + " " + numStr;
curCapacity = curCapacity-weight[i-1];
}
if(curCapacity==0)
break;
}
System.out.println(numStr);
}
// 多重背包问题
public static void multiKnapsack(int[] weight,int[] value,int[] num,int n,int capacity) {
// 初始化数组
int[][] dp = new int[n+1][capacity+1];
for(int i=1; i<n+1; i++){
for (int j = 1; j < capacity+1; j++) {
//如果第i件物品的重量大于背包容量j,则不装入背包
if(weight[i-1]>capacity){
dp[i][j] = dp[i-1][j];
} else {
// 考虑物品件数限制
int maxCapacity = Math.min(num[i-1],j/weight[i-1]); // 最多能够装几个物品i
for(int k=0; k<maxCapacity+1; k++){
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-k*weight[i-1]]+k*value[i-1]);
}
}
}
}
System.out.println(dp[n][capacity]);
int curCapacity = capacity;
String numStr = "";
for(int i=n; i>0; i--){
//若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
while(dp[i][curCapacity]>dp[i-1][curCapacity]){
numStr = i + " " + numStr;
curCapacity = curCapacity-weight[i-1];
}
if(curCapacity==0)
break;
}
System.out.println(numStr);
}
}
转自转载