本专栏将系统性地讲解计算机视觉基础知识、包含第1篇机器学习基础、第2篇深度学习基础、第3篇卷积神经网络、第4篇经典热门网络结构、第5篇目标检测基础、第6篇网络搭建及训练、第7篇模型优化方法及思路、第8篇模型超参数调整策略、第9篇模型改进技巧、第10篇模型部署基础等,全栏文章字数10万+,篇篇精品,让你轻松入门计算机视觉,欢迎大家订阅~《目标检测蓝皮书目录》
第1篇机器学习基础
1. 张量的概念及示例
1.1 张量概念
在机器学习和深度学习中,张量是一个核心的数据结构,用来表示和操作不同类型的数据。张量的概念在各种机器学习框架中被广泛应用,它是用于表示和处理不同维度数据的基本工具。那么,究竟什么是张量呢?
实际上,标量、向量、矩阵和张量这些概念本质上都是对数字的不同排列方式,用于将现实世界的数据量化并让计算机能够理解和处理。例如,图片中的每个像素点可以用一个数值表示,这些像素点的亮度值就构成了一个向量或