《目标检测蓝皮书》第1篇 机器学习基础


本专栏将系统性地讲解计算机视觉基础知识、包含第1篇机器学习基础第2篇深度学习基础第3篇卷积神经网络第4篇经典热门网络结构第5篇目标检测基础第6篇网络搭建及训练第7篇模型优化方法及思路第8篇模型超参数调整策略第9篇模型改进技巧第10篇模型部署基础等,全栏文章字数10万+,篇篇精品,让你轻松入门计算机视觉,欢迎大家订阅~《目标检测蓝皮书目录》


第1篇机器学习基础


1. 张量的概念及示例

1.1 张量概念

在机器学习和深度学习中,张量是一个核心的数据结构,用来表示和操作不同类型的数据。张量的概念在各种机器学习框架中被广泛应用,它是用于表示和处理不同维度数据的基本工具。那么,究竟什么是张量呢?

实际上,标量、向量、矩阵和张量这些概念本质上都是对数字的不同排列方式,用于将现实世界的数据量化并让计算机能够理解和处理。例如,图片中的每个像素点可以用一个数值表示,这些像素点的亮度值就构成了一个向量或

评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值