特征融合篇 | YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-Time Object Detection

YOLO-MS是一种新的实时目标检测器,通过研究不同卷积核尺寸对检测性能的影响,提出了一种增强多尺度特征表示的新策略。在不依赖预训练权重或大型数据集的情况下,YOLO-MS在MS COCO数据集上表现出色,与同类实时检测器相比,拥有更好的AP分数和计算效率平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
我们的目标是为目标检测社区提供一种高效且性能卓越的目标检测器,命名为YOLO-MS。该核心设计基于对不同卷积核尺寸对不同尺度对象检测性能的影响进行的一系列研究。研究结果是一种新策略,能够显著增强实时目标检测器的多尺度特征表示。
为验证我们策略的有效性,我们构建了一个名为YOLO-MS的网络架构。我们从头开始在MS COCO数据集上训练YOLO-MS,而不依赖于任何其他大规模数据集,如ImageNet,或预训练权重。在没有花哨的设计的情况下,我们的YOLO-MS在使用可比较数量的参数和FLOPs时,优于最近的实时目标检测器的最新技术水平,包括YOLO-v7和RTMDet。
以YOLO-MS的XS版本为例,仅具有4.5百万可学习参数和8.7G FLOPs,它在MS COCO上可以达到43%+的AP分数,比具有相同模型大小的RTMDet高出约2%+。此外,我们的工作还可以作为其他YOLO模型的即插即用模块。通常情况下,我们的方法显著提高了YOLOv8的AP分数,从37%+提升到40%+,甚至使用更少的参数和FLOPs。

论文地址:https://arxiv.org/pdf/2308.05480.pdf
代码地址:https://github.com/FishAndWasabi/YOLO-MS


### 关于 YOLO-World 的实时开放词汇对象检测 YOLO-World 是一种先进的开放词汇对象检测框架,它结合了预训练的语言模型和视觉特征提取器来实现跨类别的目标识别能力[^1]。该方法的核心在于利用大规模语言模型中的语义信息增强传统计算机视觉模型的表现力。 #### 复现 YOLO-World 的主要步骤概述 为了成功复现 YOLO-World 模型,可以参考以下技术要点: 1. **数据准备** 需要收集并处理用于训练的基础图像数据集以及对应的标签文件。通常使用的公开数据集包括 COCO 和 ImageNet 等。这些数据集提供了丰富的标注信息,有助于构建高质量的训练环境。 2. **模型架构设计** YOLO-World 使用了一个融合模块将 CLIP(Contrastive Language–Image Pre-training)或其他多模态模型生成的文字嵌入向量与卷积神经网络提取的空间特征相结合。这种结构允许系统理解未见过的新类别名称而无需重新训练整个体系。 3. **代码库推荐** GitHub 上存在多个基于 PyTorch 或 TensorFlow 开发的相关项目可供学习借鉴。例如,“openvocabulary-detection”仓库提供了一套完整的解决方案,涵盖了从基础组件搭建到最终推理部署的所有环节。 4. **性能优化技巧** 在实际操作过程中,可以通过调整超参数、引入注意力机制等方式进一步提升检测精度。此外,还可以尝试迁移学习策略以减少计算资源消耗的同时获得更好的泛化效果。 以下是简单的 Python 脚本片段展示如何加载必要的依赖项并与自定义配置一起初始化一个基本版本的对象探测实例: ```python import torch from yoloworld.model import YoloWorldModel device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YoloWorldModel(pretrained=True).to(device) def detect_objects(image_path): image_tensor = preprocess_image(image_path) # 定义自己的图片前处理函数 outputs = model(image_tensor.unsqueeze(0)) predictions = postprocess_outputs(outputs) # 同样需自行编写后置处理逻辑 return predictions ``` > 注:上述仅为示意代码,具体实现细节可能因不同开发者的设计思路有所差异,请参照官方文档或社区贡献者分享的最佳实践案例深入研究。
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值