检测头篇 | 原创自研 | YOLOv8 更换光晕自注意力 Halo 头 | 附详细结构图

本文介绍了YOLOv8框架中引入的Halo局部自注意力机制,该机制通过减少计算复杂度和内存需求,提高了模型的效率和准确性。在分类、目标检测和实例分割任务中表现出色,为自注意力模型在视觉领域的应用提供了新思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本改进已集成到YOLOv8-Magic框架!
本篇文章检测头基于 v8.1.0 发行版改进!

在这里插入图片描述

论文名称:《Scaling Local Self-Attention for Parameter Efficient Visual Backbones》

自注意力因为参数独立的感受野缩放和内容依赖的交互作用,有望改善计算机视觉系统,这与参数依赖的缩放和内容独立的卷积交互形成对比。自注意力模型最近在精度与参数之间的权衡上显示出与基线卷积模型(如ResNet-50)相比的鼓舞人心的改进。在这项工作中,我们的目标是开发可以不仅超越规范的基线模型,甚至超越高性能的卷积模型的自注意力模型。我们提出了两种自注意力的扩展,与更高效的自注意力实现相结合,提高了这些模型的速度、内存使用和准确性。我们利用这些改进来开发一个新的自注意力模型家族,HaloNets,在ImageNet分类基准的参数限制设置上达到了最先进的准确性。在初步的迁移学习实验中,我们发现HaloNet模型的表现超过了更大的模型,并具有更好的推理性能。在更难的任务如目标检测和实例分割上,我们简单的局部自注意力和卷积混合体显示了对比非常强的基线的改进。这些结果标志着自注意力模型在传统上由卷积模型主导的设置中展示其有效性的另一步。

在当前的深

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值