“torch.load“中出现的“Unexpected key(s) in state_dict“报错问题

本文介绍了如何在使用`model.load_state_dict()`时,设置`strict=False`以允许加载过程中不完全匹配的键。同时,通过OrderedDict和条件判断移除了position_ids相关项,以确保模型有效加载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:
在这里插入图片描述
解决:
在这里插入图片描述

  1. 添加strict=False,允许加载过程中出现不匹配的键。但请注意,仍然需要确保模型中的主要参数能够正确加载,以确保模型的有效性。
model.load_state_dict(state_dict)
# 改为:
model.load_state_dict(state_dict, strict=False)
  1. #去除关键字”model"
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in params.items():
    if not k.endswith('position_ids'):
        new_state_dict[k] = v
model.load_state_dict(new_state_dict)
<think>嗯,用户遇到了MobileNetV2加载state_dict时出现键不匹配的问题,具体是Missing key(s) 'classifier.1.weight', 'classifier.1.bias' 和 Unexpected key(s) 'classifier.weight', 'classifier.bias'。我需要仔细分析可能的原因,然后给出解决方案。 首先,根据错误信息,模型期望的键是'classifier.1.weight'和'classifier.1.bias',但state_dict中的键是'classifier.weight'和'classifier.bias'。这说明模型的分类器结构可能与保存的state_dict中的分类器结构不同。可能的原因有两个:模型结构发生变化,或者保存的state_dict是在多GPU训练时使用DataParallel导致的键名前缀问题。 接下来,我需要查看用户提供的引用资料。引用[4]提到,使用DataParallel会在键名前加上'module.'前缀,导致不匹配。但在这个案例中,错误信息中没有提到'module.'前缀,反而出现的是'classifier'层名称的变化。因此,可能的问题出在分类器层的结构不同。例如,用户可能在定义MobileNetV2时,分类器层使用了不同的结构,比如原本的classifier是一个包含两个线性层的Sequential模块,而现在可能被替换为一个单一的线性层,导致层的名称从'classifier.1.weight'变为'classifier.weight'。 根据引用[3],解决方法之一是使用strict=False参数忽略不匹配的键,但这可能导致某些层未被正确初始化。更好的方法是修改state_dict的键名,使其与当前模型的键名匹配。引用[4]中提到可以通过修改键名来解决,比如去掉'module.'前缀,但这里需要处理的是分类器层的名称差异。 所以,解决方案应该是调整state_dict中的键名,将'classifier.weight'改为'classifier.1.weight',同理处理bias。或者,检查模型结构,确认分类器的定义是否与保存的state_dict中的结构一致。例如,如果原来的分类器是nn.Sequential(nn.Dropout(), nn.Linear(...)),那么第一层是Dropout,第二层是Linear,对应的权重名称是'classifier.1.weight'。如果现在修改了分类器结构,只保留一个Linear层,那么名称变为'classifier.weight',导致不匹配。 因此,用户需要检查模型的classifier部分的结构,确保与state_dict中的结构一致。如果不一致,需要调整模型结构,或者在加载时重命名键。例如,可以在加载state_dict之前,遍历键名,将'classifier.weight'替换为'classifier.1.weight',并同样处理bias。 另外,引用[5]提到版本不兼容也可能导致类似问题,但用户的问题更可能源于结构差异。因此,建议用户首先检查模型结构,确认分类器层的定义,然后相应调整state_dict的键名。如果结构确实不同,可能需要重新训练模型,或者在加载时忽略不匹配的键,但需要注意潜在的问题。 总结步骤:1. 检查模型结构,确认分类器层的定义;2. 调整state_dict的键名以匹配模型;3. 使用strict=False作为临时解决方案,但需谨慎。</think>针对MobileNetV2加载state_dict时出现的键不匹配问题,以下是分步解决方案: ### 问题分析 错误信息显示: - **Missing keys**:`classifier.1.weight`, `classifier.1.bias` - **Unexpected keys**:`classifier.weight`, `classifier.bias` 这表明模型的分类器层结构与state_dict中保存的结构不一致。常见原因是: 1. **模型结构调整**:当前模型的分类器层从`nn.Sequential`(含多层)改为单层`nn.Linear` 2. **权重命名差异**:多GPU训练时使用`DataParallel`导致键名前缀问题(但本例中未出现`module.`前缀) --- ### 解决方案 #### 方法1:修改state_dict键名(推荐) 适用于**模型结构未改变但保存的键名被简化**的情况: ```python # 加载原始state_dict original_state_dict = torch.load("mobilenetv2.pth") # 键名替换规则:classifier.weight -> classifier.1.weight new_state_dict = {} for key, value in original_state_dict.items(): if key.startswith("classifier"): new_key = key.replace("classifier.", "classifier.1.") new_state_dict[new_key] = value else: new_state_dict[key] = value # 加载修改后的state_dict model.load_state_dict(new_state_dict, strict=True) ``` #### 方法2:调整模型结构 如果**模型分类器层结构确实被修改**(例如从双层变单层): ```python # 原分类器结构(假设是双层) classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(1280, num_classes) # 对应键名 classifier.1.weight ) # 新分类器结构(单层) classifier = nn.Linear(1280, num_classes) # 对应键名 classifier.weight # 需要重新训练或按方法1修改state_dict ``` #### 方法3:忽略不匹配键(临时方案) 仅用于快速测试,但**可能导致部分参数未初始化**: ```python model.load_state_dict(torch.load("mobilenetv2.pth"), strict=False) ``` --- ### 验证步骤 1. **打印键名对比**: ```python print("Model keys:", [k for k in model.state_dict().keys() if "classifier" in k]) print("State_dict keys:", [k for k in original_state_dict.keys() if "classifier" in k]) ``` 2. **检查分类器层定义**: ```python print(model.classifier) # 确认是nn.Sequential还是nn.Linear ``` --- ### 根本原因 - 当分类器使用`nn.Sequential`时,子层索引从0开始,例如: $$ \text{classifier.0.weight} \rightarrow \text{Dropout层} $$ $$ \text{classifier.1.weight} \rightarrow \text{Linear层} $$ - 单层`nn.Linear`会直接使用`classifier.weight`作为键名 --- ### 相关引用支持 - 通过修改键名解决命名不一致问题(引用[4])[^4] - 使用`strict=False`忽略不匹配键(引用[3])[^3] - 结构差异导致键名变化的典型场景(引用[2])[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码小白的成长

计算机网络PPT下载

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值