flink端到端数据一致性

这里有一个注意点,就是flink端的精准一次

1.barrier对齐精准和一次非对齐精准一次 对比​

​维度​​Barrier 对齐的精准一次​​Barrier 非对齐的精准一次​
​触发条件​需等待所有输入流的 Barrier 对齐后才能触发检查点 收到第一个 Barrier 立即触发,无需等待对齐 
​数据处理方式​对齐期间阻塞部分数据流,仅处理未到达 Barrier 的分区数据 允许所有数据继续流动,将 Barrier 后的数据标记为 in-flight 并保存 
​状态保存内容​仅保存算子自身的状态(如累加器、窗口状态)额外保存输入/输出缓冲区中的未处理数据(in-flight 数据)
​资源开销​低(仅保存状态),但可能因对齐阻塞导致吞吐下降 高(需保存大量缓冲区数据),但减少阻塞时间 
​适用场景​低延迟要求不高的场景,或输入流速率均衡的场景 高吞吐、高延迟或反压严重的场景

​1. Barrier 对齐的精准一次​
  • ​触发逻辑​​:
    当算子收到所有输入流的 Barrier 后,才会触发状态快照。例如,若某个算子有两个输入流,需等待两个流的 Barrier 均到达 。
  • ​数据处理流程​​:
    • 部分输入流的 Barrier 先到达时,该流后续数据会被缓存(阻塞),其他流的数据继续处理 。
    • 所有 Barrier 对齐后,统一保存状态并向下游广播 Barrier; 

  • ​优点​​:
    • 状态体积小,恢复速度快;
    • 严格保证数据仅处理一次; 

​2. Barrier 非对齐的精准一次​
  • ​触发逻辑​​:
    收到任意一个输入流的 Barrier 后立即触发快照,无需等待其他流的 Barrier ;
  • ​数据处理流程​​:
    • 继续处理所有输入流的数据,包括 Barrier 之后的数据;
    • 将 Barrier 到达时未处理的数据(输入缓冲区)和已处理但未输出的数据(输出缓冲区)标记为 in-flight 数据,与状态一起保存 ;
  • ​优点​​:
    • 避免因对齐导致的阻塞,提升吞吐量和反压容错能力;
    • 适用于网络延迟波动或输入流速率差异大的场景

生产环境选择建议​

​场景​​推荐机制​​理由​
输入流速率均衡且延迟敏感Barrier 对齐避免额外存储开销,恢复效率高 

1

4

高吞吐或反压严重Barrier 非对齐减少阻塞时间,缓解反压影响 

6

7

状态体积敏感(如 TB 级状态)Barrier 对齐非对齐模式保存的 in-flight 数据可能显著增加存储成本 

3

7

Kafka、Flink 和 ClickHouse 是现代数据处理中使用最广泛的技术之一。Kafka 是分布式流处理平台,Flink 是开源流处理框架,ClickHouse 是列式数据库。这三个技术的结合可以实现端到端的一致性,从而提高数据处理的效率和准确性。 Kafka 提供了高性能的消息传输和存储功能,可以实现数据的实时传输和持久化存储。Flink 可以通过连接 Kafka 实现流数据流的处理和计算。ClickHouse 则可以作为数据仓库或存储层,提供高效的数据查询和分析。 在使用这三个技术时,需要注意端到端的一致性,以确保数据的准确性和可靠性。具体而言,需要注意以下几点: 1. 数据格式的一致性:在 Kafka、Flink 和 ClickHouse 中使用相同的数据格式,以确保数据传输和处理的一致性。 2. 数据清洗和转换的一致性:在数据流转换和清洗时,需要保持一致的逻辑和规则,以确保数据的一致性和准确性。 3. 数据处理和存储的一致性:在使用 Flink 和 ClickHouse 进行数据处理和存储时,需要保持一致的配置和参数设置,以确保数据的一致性和可靠性。 4. 数据监控和管理的一致性:在数据处理过程中,需要对数据进行监控和管理,以确保数据的完整性和可靠性。 综上所述,Kafka、Flink 和 ClickHouse 的结合可以实现端到端的一致性,从而提高数据处理的效率和准确性。在使用这三个技术时,需要注意数据格式、数据清洗和转换、数据处理和存储、数据监控和管理等方面的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别这么骄傲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值