提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
提示:这里可以添加本文要记录的大概内容:
在pandas中,iloc、loc和.columns是DataFrame和Series对象上非常常用的属性或方法,它们各自有不同的用途和用法。
提示:以下是本篇文章正文内容,下面案例可供参考
一、.iloc用法
基于整数位置的索引器,主要用于通过整数位置来选择数据。它接受行和列的位置(基于0的索引)作为参数。如果只想选择行,可以省略列参数(默认为选择所有列);反之亦然。
(一)初始化
假设我们有一个 DataFrame data,其结构如下:
import pandas as pd
data = pd.DataFrame({
'A': [1, 2, 3, 4],
'B': [5, 6, 7, 8],
'C': [9, 10, 11, 12]
})
print(data)
输出
A B C
0 1 5 9
1 2 6 10
2 3 7 11
3 4 8 12
(二)使用步骤
1.选择单行
选择第一行(记住,Python 是从 0 开始计数的):
print(data.iloc[0])
输出:
A 1
B 5
C 9
Name: 0, dtype: int64
2.选择多行
选择第1行和第2行:
print(data.iloc[0:2])
输出:
A B C
0 1 5 9
1 2 6 10
选择前两行:
print(data.iloc[:2])
输出:
A B C
0 1 5 9
1 2 6 10
选择后两行:
print(data