【Pytorch】No moudel named 'd2lzh_pytorch'

本文介绍了如何处理在Pytorch项目中遇到的‘d2lzh_pytorch’模块找不到的错误。通过添加一个名为d2lzh_pytorch.py的文件,并在缺少依赖包如torchtext时,使用pip install torchtext进行安装。如果遇到问题,建议参考后续教程进行解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

添加一个d2lzh_pytorch.py文件

import collections
import math
import os
import random
import sys
import tarfile
import time
import json
import zipfile
from tqdm import tqdm
from PIL import Image
from collections import namedtuple

from IPython import display
from matplotlib import pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torchtext
import torchtext.vocab as Vocab
import numpy as np

VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
               'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
               'diningtable', 'dog', 'horse', 'motorbike', 'person',
               'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']

VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
                [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
                [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
                [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
                [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
                [0, 64, 128]]


# ###################### 3.2 ############################
def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize


def use_svg_display():
    """Use svg format to display plot in jupyter"""
    display.set_matplotlib_formats('svg')


def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)])  # 最后一次可能不足一个batch
        yield features.index_select(0, j), labels.index_select(0, j)


def linreg(X, w, b):
    return torch.mm(X, w) + b


def squared_loss(y_hat, y):
    # 注意这里返回的是向量, 另外, pytorch里的MSELoss并没有除以 2
    return ((y_hat - y.view(y_hat.size())) ** 2) / 2


def sgd(params, lr, batch_size):
    # 为了和原书保持一致,这里除以了batch_size,但是应该是不用除的,因为一般用PyTorch计算loss时就默认已经
    # 沿batch维求了平均了。
    for param in params:
        param.data -= lr * param.grad / batch_size  # 注意这里更改param时用的param.data


# ######################3##### 3.5 #############################
def get_fashion_mnist_labels(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def show_fashion_mnist(images, labels):
    use_svg_display()
    # 这里的_表示我们忽略(不使用)的变量
    _, figs = plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.view((28, 28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
        # plt.show()


# 5.6 修改
# def load_data_fashion_mnist(batch_size, root='~/Datasets/FashionMNIST'):
#     """Download the fashion mnist dataset and then load into memory."""
#     transform = transforms.ToTensor()
#     mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
#     mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
#     if sys.platform.startswith('win'):
#         num_workers = 0  # 0表示不用额外的进程来加速读取数据
#     else:
#         num_workers = 4
#     train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
#     test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

#     return train_iter, test_iter




# ########################### 3.6  ###############################
# (3.13节修改)
# def evaluate_accuracy(data_iter, net):
#     acc_sum, n = 0.0, 0
#     for X, y in data_iter:
#         acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
#         n += y.shape[0]
#     return acc_sum / n


def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, optimizer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            y_hat = net(X)
            l = loss(y_hat, y).sum()

            # 梯度清零
            if optimizer is not None:
                optimizer.zero_grad()
            elif params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()

            l.backward()
            if optimizer is None:
                sgd(params, lr, batch_size)
            else:
                optimizer.step()  # “softmax回归的简洁实现”一节将用到

            train_l_sum += l.item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))


# ########################### 3.7 #####################################3
class FlattenLayer(torch.nn.Module):
    def __init__(self):
        super(FlattenLayer, self).__init__()

    def forward(self, x):  # x shape: (batch, *, *, ...)
        return x.view(x.shape[0], -1)


# ########################### 3.11 ###############################
def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
             legend=None, figsize=(3.5, 2.5)):
    set_figsize(figsize)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.semilogy(x_vals, y_vals)
    if x2_vals and y2_vals:
        plt.semilogy(x2_vals, y2_vals, linestyle=':')
        plt.legend(legend)
        # plt.show()


# ############################# 3.13 ##############################
# 5.5 修改
# def evaluate_accuracy(data_iter, net):
#     acc_sum, n = 0.0, 0
#     for X, y in data_iter:
#         if isinstance(net, torch.nn.Module):
#             net.eval() # 评估模式, 这会关闭dropout
#             acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
#             net.train() # 改回训练模式
#         else: # 自定义的模型
#             if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
#                 # 将is_training设置成False
#                 acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
#             else:
#                 acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
#         n += y.shape[0]
#     return acc_sum / n






# ########################### 5.1 #########################
def corr2d(X, K):
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y


# ############################ 5.5 #########################
def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        # 如果没指定device就使用net的device
        device = list(net.parameters())[0].device
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval()  # 评估模式, 这会关闭dropout
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()  # 改回训练模式
            else:  # 自定义的模型, 3.13节之后不会用到, 不考虑GPU
                if ('is_training' in net.__code__.co_varnames):  # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            n += y.shape[0]
    return acc_sum / n


def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))


# ########################## 5.6 #########################3
def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
    """Download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())

    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值