首先一定要分清楚 子串 与 子序列 的概念:两者都是从某一序列种从左向右找出一定元素组成的,但子串是一定要连续的,而子序列不需要。例如:串 abcde 的字串可以为 abc、cde 等,子序列可以为 abc、ade、ace 。
最长递增子序列问题(LIS):给定一个有 n 个元素的序列 a[ ],求出其递增子序列的最大长度。
短短的题目透露出了很大的恶意啊...这个问题我想了很久,也参考了很多资料,回味了很多遍后终于算是掌握了,今天把笔记记上,一面下次又忘记了很难拾起来。除了十分暴力又费时的枚举算法外,下面总结了两种实现方法:
1、动态规划 —— 时间复杂度
通过分析,对于一个递增子序列 s,元素 e 是否能加入到序列的末端使得其长度加一,要看 e 是否大于序列 s 的最后一个元素。故,对本问题讨论的递增序列来说,序列的最末元素是至关重要的。
那么思路来了:dp[ i ] = 以元素 a[ i ] 结尾的最长子序列长度,那么其状态转移方程如下:
初始情况:将dp数组全都赋初值1
那么最终的答案就是
代码实现:
#include <algorithm>
#include <climits>
#define MAXN 100000
using namespace std;
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int len = 0, dp[MAXN];
/* 将dp初值全设置为1 */
for(int i = 0; i < MAXN; i++)
dp[i] = 1;
for(int i = 0; i < nums.size(); i++) {
for(int j = 0; j < i; j++)
if(nums[j] < nums[i])
dp[i] = max(dp[i], dp[j] + 1);
len = max(len, dp[i]); //更新最大长度
}
return len;
}
};
2、动态规划 + 二分查找 —— 时间复杂度
这个方法比上面快,但是也相对难理解一些:
首先要弄明白:其实对于一个子序列,我们希望它的最末元素越小越好,这样子才有机会变得更长。那么其实在讨论时,对于等长度的递增子序列中,我们只需要在其中挑选 最末元素最小的 那个序列继续讨论即可。比如说:序列 "1 3 2 6 9",我在讨论前 3 项的时候,有两个长度为 2 的递增子序列:"1 3"、"1 2",那么接下来应该在序列 "1 2" 上进行延续,"1 3" 序列完全可以被其更佳地替换掉。
那么思路就来了: 取用一个数组 tail[ i ] :长度为 i 的递增子序列的最小的最末元素(有点绕,看看例子更好理解),最终 tail 开辟了多长,LIS就是多长。且 tail 数组一定是一个递增的序列!最初情况:tail[ 1 ] = a[ 0 ],len = 1。
具体算法如下,依次遍历数组 a[ ] 中的元素:
- 若a[ i ] >= tail[ len ] :既然此元素比我们记录的当前最长子序列的最末元素还要大,那么可以增长我们的最长子序列:len ++, tail[ len ] = a[ i ]
- 否则:那么就不能增长子序列长度,但可以看是否可以更新前面稍微短一些的子序列的最末元素的最小值。用二分法(tail数组是递增的)找到 下标 k 满足
,然后赋值 tail[k +1] = a[ i ]。
下面看一个示例:
注意:
- 最终 tail 开辟的长度len即为答案,不过tail中留下的序列不一定是我们的最长递增子序列哦,只能说这个方法能算出长度,但是无法给出对应的答案序列。
- 二分查找的时间复杂度为
代码实现:
#include <algorithm>
#include <climits>
#define MAXN 100000
using namespace std;
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
/* 防止nums为空的情况导致RE */
if(nums.size() == 0)
return 0;
int tail[MAXN] = {0}, len = 1;
tail[1] = nums[0];
for(int i = 1; i < nums.size(); i++) {
if(nums[i] > tail[len])
tail[++len] = nums[i];
else {
int index = Find(tail, 0, len, nums[i]); //二分查找
tail[index] = nums[i]; //赋值
}
}
return len;
}
/* 在数组a[l..r]中找到 a[k - 1] < temp <= a[k]
返回k */
int Find(int a[], int l, int r, int temp) {
if(r - l == 1)
return r;
int mid = (l + r) / 2;
if(temp == a[mid])
return mid;
else if(temp < a[mid])
return Find(a, l, mid, temp);
else
return Find(a, mid, r, temp);
}
};
有任何问题欢迎评论交流,如果本文对您有帮助不妨点点赞,嘻嘻~
end
欢迎关注个人公众号“ 鸡翅编程 ”,这里是认真且乖巧的码农一枚。
---- 做最乖巧的博客er,做最扎实的程序员 ----
旨在用心写好每一篇文章,平常会把笔记汇总成推送更新~