个人笔记,非教程
PCA
C o v ( X ) w = X X T w = λ w Cov(X)w=XX^Tw=\lambda w Cov(X)w=XXTw=λw
KPCA,左乘 X T X^T XT
X
T
C
o
v
(
X
)
w
=
X
T
X
X
T
w
=
λ
X
T
w
X^TCov(X)w=X^TXX^Tw=\lambda X^Tw
XTCov(X)w=XTXXTw=λXTw
κ
(
X
,
X
)
X
T
w
=
λ
X
T
w
\kappa(X,X)X^Tw=\lambda X^Tw
κ(X,X)XTw=λXTw
因为投影向量 w w w是样本X的线性组合
w = ∑ i = 1 N α i x i w=\sum_{i=1}^N \alpha_ix_i w=i=1∑Nαixi
代入得
κ
(
X
,
X
)
X
T
(
∑
i
=
1
N
α
i
x
i
)
=
λ
X
T
(
∑
i
=
1
N
α
i
x
i
)
\kappa(X,X)X^T(\sum_{i=1}^N \alpha_ix_i)=\lambda X^T(\sum_{i=1}^N \alpha_ix_i)
κ(X,X)XT(i=1∑Nαixi)=λXT(i=1∑Nαixi)
κ
(
X
,
X
)
X
T
X
α
=
λ
X
T
X
α
\kappa(X,X)X^TX\alpha=\lambda X^TX\alpha
κ(X,X)XTXα=λXTXα
κ
2
(
X
,
X
)
α
=
λ
κ
(
X
,
X
)
α
\kappa^2(X,X)\alpha=\lambda \kappa(X,X)\alpha
κ2(X,X)α=λκ(X,X)α
κ
(
X
,
X
)
α
=
λ
α
\kappa(X,X)\alpha=\lambda \alpha
κ(X,X)α=λα
对 κ ( X , X ) \kappa(X,X) κ(X,X)进行特征分解即得到 α \alpha α,即得到投影向量 w w w
w = ∑ i = 1 N α i x i w=\sum_{i=1}^N \alpha_ix_i w=i=1∑Nαixi