KPCA推导

个人笔记,非教程

PCA

C o v ( X ) w = X X T w = λ w Cov(X)w=XX^Tw=\lambda w Cov(X)w=XXTw=λw

KPCA,左乘 X T X^T XT

X T C o v ( X ) w = X T X X T w = λ X T w X^TCov(X)w=X^TXX^Tw=\lambda X^Tw XTCov(X)w=XTXXTw=λXTw
κ ( X , X ) X T w = λ X T w \kappa(X,X)X^Tw=\lambda X^Tw κ(XX)XTw=λXTw

因为投影向量 w w w是样本X的线性组合

w = ∑ i = 1 N α i x i w=\sum_{i=1}^N \alpha_ix_i w=i=1Nαixi

代入得

κ ( X , X ) X T ( ∑ i = 1 N α i x i ) = λ X T ( ∑ i = 1 N α i x i ) \kappa(X,X)X^T(\sum_{i=1}^N \alpha_ix_i)=\lambda X^T(\sum_{i=1}^N \alpha_ix_i) κ(XX)XT(i=1Nαixi)=λXT(i=1Nαixi)
κ ( X , X ) X T X α = λ X T X α \kappa(X,X)X^TX\alpha=\lambda X^TX\alpha κ(XX)XTXα=λXTXα
κ 2 ( X , X ) α = λ κ ( X , X ) α \kappa^2(X,X)\alpha=\lambda \kappa(X,X)\alpha κ2(XX)α=λκ(XX)α
κ ( X , X ) α = λ α \kappa(X,X)\alpha=\lambda \alpha κ(XX)α=λα

κ ( X , X ) \kappa(X,X) κ(XX)进行特征分解即得到 α \alpha α,即得到投影向量 w w w

w = ∑ i = 1 N α i x i w=\sum_{i=1}^N \alpha_ix_i w=i=1Nαixi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值