HashMap深度解释推导

1. 泊松分布公式:

在这里插入图片描述

2. HashMap泊松分布的解释推导:
    
     * Ideally, under random hashCodes, the frequency of
     * nodes in bins follows a Poisson distribution
     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
     * parameter of about 0.5 on average for the default resizing
     * threshold of 0.75, although with a large variance because of
     * resizing granularity.
     *
     * 翻译:
     *     尽管因为调整粒度而产生较大的方差,但是理想的情况,在随机hashCodes下,桶中节	点的频率遵循泊松分布。
     *     默认调整阈值为0.75的条件下,泊松分布中的概率参数λ=0.5* 解释:
     * 	   k表示数量,这里指桶中节点的个数。
     *     λ表示事件的频率。这里λ=0.5,代表理想情况下,平均100个桶,50个数据,则1个桶有数据的概率是0.5*     忽略方差,把λ代入。则求一个桶中出现k个节点的概率,公式为:
     
     
    private static String 
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值