*Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
*(http://en.wikipedia.org/wiki/Poisson_distribution)witha* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although witha large variance because of
* resizing granularity.** 翻译:
* 尽管因为调整粒度而产生较大的方差,但是理想的情况,在随机hashCodes下,桶中节 点的频率遵循泊松分布。
* 默认调整阈值为0.75的条件下,泊松分布中的概率参数λ=0.5。
* 解释:
* k表示数量,这里指桶中节点的个数。
* λ表示事件的频率。这里λ=0.5,代表理想情况下,平均100个桶,50个数据,则1个桶有数据的概率是0.5。
* 忽略方差,把λ代入。则求一个桶中出现k个节点的概率,公式为:
privatestaticString