- 博客(93)
- 收藏
- 关注
原创 从代码学习深度学习 - 自然语言推断:使用注意力 PyTorch版
自然语言推断(Natural Language Inference, NLI)是自然语言处理(NLP)领域一个核心且富有挑战性的任务。它的目标是判断两句话之间的逻辑关系,通常分为蕴涵(Entailment)、矛盾(Contradiction)和中性(Neutral)三类。例如,给定前提“一个人在骑马”,我们希望模型能推断出假设“一个人在户外”是蕴涵关系,而“一个人在睡觉”是矛盾关系。传统的NLI模型常常依赖于复杂的深度网络结构,如循环神经网络(RNN)或卷积神经网络(CNN)。
2025-06-29 20:25:13
822
原创 从代码学习深度强化学习 - TRPO PyTorch版
欢迎来到深度强化学习(Deep Reinforcement Learning, DRL)的世界!DRL 是深度学习与强化学习的强大结合,它让智能体(Agent)能够在复杂的、高维度的环境中通过试错来学习最优策略。近年来,DRL 在游戏、机器人控制、自然语言处理等领域取得了举世瞩目的成就。在众多 DRL 算法中,策略梯度(Policy Gradient, PG)方法是一类直接对策略进行优化的算法。然而,传统的 PG 方法存在一个显著的痛点:训练过程不稳定。
2025-06-27 22:13:25
668
原创 从代码学习深度学习 - 自然语言推断与数据集 PyTorch版
欢迎来到“从代码学习深度学习”系列!在自然语言处理(NLP)的宏伟蓝图中,理解句子之间的逻辑关系是一项核心挑战。这项任务被称为自然语言推断(Natural Language Inference, NLI),它要求模型判断一个“前提”(Premise)句子能否推断出另一个“假设”(Hypothesis)句子。为了训练能够胜任此任务的深度学习模型,我们需要一个大规模、高质量的标注数据集。斯坦福自然语言推断(SNLI)数据集正是为此而生,它已成为该领域的基石。
2025-06-27 21:46:35
889
原创 从代码学习深度学习 - 情感分析:使用卷积神经网络 PyTorch版
在之前的章节中,我们探讨了如何使用循环神经网络(RNN)来处理序列数据。今天,我们将探索另一种强大的模型——卷积神经网络(CNN)——并将其应用于自然语言处理中的经典任务:情感分析。你可能会觉得奇怪,CNN不是主要用于图像处理的吗?确实,CNN在计算机视觉领域取得了巨大的成功,它通过二维卷积核捕捉图像的局部特征(如边缘、纹理)。但如果我们换个角度思考,文本序列可以被看作是一维的“图像”,其中每个词元(token)就是一个“像素”。这样,我们就可以使用一维卷积来捕捉文本中的局部模式,比如由相邻单词组成的。
2025-06-26 10:08:47
925
原创 从代码学习深度学习 - 情感分析:使用循环神经网络 PyTorch版
在信息爆炸的时代,从海量的文本数据中提取有价值的信息变得至关重要。无论是电商网站的商品评论、社交媒体上的用户反馈,还是新闻文章中的观点倾向,理解文本背后的情感色彩——即情感分析——都有着广泛的应用。循环神经网络(RNN)由于其对序列数据的强大建模能力,天然地适用于处理文本这类具有时序特征的数据。在本篇博客中,我们将从零开始,使用PyTorch框架构建一个基于双向循环神经网络(Bi-RNN)的情感分析模型。
2025-06-24 13:37:46
633
原创 从代码学习深度强化学习 - Actor-Critic 算法 PyTorch版
在深度强化学习(DRL)的广阔天地中,算法可以大致分为两大家族:基于价值(Value-based)的算法和基于策略(Policy-based)的算法。像DQN这样的算法通过学习一个价值函数来间接指导策略,而像REINFORCE这样的算法则直接对策略进行参数化和优化。然而,这两种方法各有优劣。基于价值的方法通常数据效率更高、更稳定,但难以处理连续动作空间;基于策略的方法可以直接处理各种动作空间,并能学习随机策略,但其学习过程往往伴随着高方差,导致训练不稳定、收敛缓慢。为了融合两者的优点,
2025-06-22 20:54:52
752
原创 从代码学习深度学习 - 情感分析及数据集 PyTorch版
欢迎来到“从代码学习深度学习”系列!情感分析。随着互联网的普及,从产品评论、社交媒体到论坛讨论,我们每天都在产生海量的文本数据。这些数据背后隐藏着人们丰富的情感和观点,具有巨大的商业和研究价值。情感分析(Sentiment Analysis)正是研究如何从文本中自动识别和提取这些“隐藏”情绪的技术。它能帮助我们理解公众对政策的看法、分析市场的恐慌或乐观情绪,或是评估消费者对新产品的反馈。
2025-06-22 20:18:24
1089
原创 从代码学习深度学习 - 预训练BERT PyTorch版
大家好!欢迎来到新一期的“从代码学习深度学习”系列。今天,我们将深入探索自然语言处理(NLP)领域最具影响力的模型之一——BERT(Bidirectional Encoder Representations from Transformers)。自2018年问世以来,BERT凭借其强大的语言理解能力,彻底改变了NLP领域的格局。BERT的核心思想在于通过两个巧妙的预训练任务,在一个巨大的文本语料库上学习语言的深层双向表示。掩码语言模型 (Masked Language Model, MLM)
2025-06-21 15:22:40
1104
原创 从代码学习深度强化学习 - REINFORCE 算法 PyTorch版
欢迎来到“从代码学习深度强化学习”系列!在之前的文章中,我们可能已经接触了许多基于价值(Value-based)的强化学习算法,如 Q-learning 和 DQN。这些算法的核心思想是学习一个价值函数(如 Q-函数),然后根据这个函数间接地推导出一个最优策略。然而,在很多现实场景中,尤其是那些动作空间连续或者非常大的问题中,直接学习一个策略函数可能更为高效和直接。今天,我们将深入探讨**策略梯度(Policy Gradient)**方法,这正是直接学习策略的算法家族的基石。REINFORCE。
2025-06-21 10:38:41
1035
原创 从代码学习深度强化学习 - Dueling DQN PyTorch版
大家好!欢迎来到“从代码学习深度强化学习”系列。在之前的文章中,我们可能已经了解了深度Q网络(DQN)的强大之处,它通过结合深度学习和Q-Learning,成功地让智能体在Atari游戏等复杂环境中达到了超人类水平。然而,经典的DQN并非完美无缺。为了解决其存在的一些问题(如Q值过高估计、样本效率不高等),研究者们提出了一系列改进版本,共同构成了“DQN家族”。今天,我们将深入探讨其中一个非常重要且高效的改进——。
2025-06-20 10:23:36
462
原创 从代码学习深度强化学习 - Double DQN PyTorch版
欢迎来到“从代码学习深度强化学习”系列!在强化学习(RL)的世界里,Deep Q-Network (DQN) 算法无疑是一个里程碑,它巧妙地将深度学习的强大感知能力与Q-Learning的决策能力相结合,解决了许多之前无法攻克的复杂问题。然而,经典的DQN算法并非完美无瑕。它存在一个众所周知的问题——Q值过高估计 (Overestimation)。这个问题会导致智能体的学习过程不稳定,甚至无法收敛到最优策略。为了解决这一挑战,研究者们提出了Double DQN,一个对原始DQN的优雅而高效的改进。
2025-06-19 19:09:37
489
原创 从代码学习深度强化学习 - DQN PyTorch版
欢迎来到深度强化学习的世界!如果你对 Q-learning 有所了解,你可能会知道它使用一个表格(Q-table)来存储每个状态-动作对的价值。然而,当状态空间变得巨大,甚至是连续的时候(比如一个小车在轨道上的位置),Q-table 就变得不切实际。这时,深度Q网络(Deep Q-Network, DQN)就闪亮登场了。DQN 的核心思想是用一个神经网络来代替 Q-table,实现从状态到(各个动作的)Q值的映射。这使得我们能够处理具有连续或高维状态空间的环境。本文将以经典的神经网络近似经验回放和。
2025-06-18 09:46:39
851
原创 从代码学习深度学习 - 来自Transformers的双向编码器表示(BERT) PyTorch版
在自然语言处理(NLP)的世界里,词嵌入技术是基石。从早期的 Word2Vec、GloVe 等上下文无关(context-independent)模型,到后来能够根据上下文动态调整词表示的 ELMo、GPT 等上下文敏感(context-sensitive)模型,我们见证了 NLP 领域表示学习的飞速发展。上下文无关模型,如 Word2Vec,为每个词分配一个固定的向量,无法区分多义词。例如,“bank”在“river bank”(河岸)和“investment bank”(投资银行)中会被赋予完全相同的表
2025-06-18 09:29:10
725
原创 从代码学习深度学习 - 词的相似性和类比任务 PyTorch版
词向量(Word Embeddings)是自然语言处理(NLP)中的基石之一。它们是将词汇表中的词语映射到低维连续向量空间的技术,使得语义上相似的词在向量空间中也彼此接近。实际上,在大型语料库上预先训练的词向量可以应用于下游的自然语言处理任务,这将在后面讨论。为了直观地演示大型语料库中预训练词向量的语义,让我们将预训练词向量应用到词的相似性和类比任务中。本篇博客将通过 PyTorch 代码实例,展示如何加载和使用预训练的 GloVe 词向量,并将其应用于查找相似词和完成词类比任务。
2025-06-15 16:07:04
1146
原创 从代码学习深度学习 - 子词嵌入 PyTorch版
在自然语言处理(NLP)的早期阶段,词嵌入技术如Word2Vec和GloVe彻底改变了我们表示词汇的方式。它们能够将单词映射到低维稠密向量空间,捕捉词汇间的语义关系。然而,这些模型通常将每个单词视为一个独立的原子单元。词形变化:例如,“help”,“helps”,“helped”和“helping”虽然词根相同,但会被视为完全不同的词,拥有独立的向量表示,无法共享学习到的信息。罕见词和未登录词(Out-of-Vocabulary, OOV)
2025-06-14 16:00:21
1417
原创 从代码学习深度强学习 - Dyna-Q 算法 PyTorch版
在强化学习(Reinforcement Learning, RL)的广阔天地中,智能体(Agent)通过与环境(Environment)的交互来学习如何做出最优决策。无模型的强化学习(Model-Free RL)和基于模型的强化学习(Model-Based RL)。无模型RL:不尝试理解环境的动态变化,而是直接从与环境交互采样到的数据中学习策略或价值函数。我们熟悉的Q-learning、Sarsa、DQN等都属于这一类。它们通常更通用,但学习效率(即样本复杂度)较低。基于模型RL。
2025-06-11 20:36:50
1160
原创 从代码学习深度学习 - 全局向量的词嵌入(GloVe)PyTorch版
在自然语言处理(NLP)的广阔天地中,如何让计算机理解人类语言的丰富内涵,一直是核心挑战。词嵌入(Word Embedding)技术为此提供了优雅的解决方案,它将词语映射到低维、稠密的向量空间中,使得语义相近的词在空间中的距离也相近。我们之前已经熟悉了像Word2Vec这样的模型,它通过局部上下文窗口来学习词向量。然而,Word2Vec的视野有限,它一次只能看到一个小的上下文窗口,忽略了语料库中丰富的全局统计信息。今天,我们将深入探讨另一种强大的词嵌入模型——。
2025-06-11 13:49:03
656
原创 从代码学习深度强化学习 - 多臂老虎机 PyTorch版
欢迎来到“从代码学习深度强化学习”系列!在本篇文章中,我们将深入探讨一个强化学习中的经典问题——多臂老虎机(Multi-Armed Bandit, MAB)。多臂老虎机问题,顾名思义,源于一个赌徒在赌场面对一排老虎机(即“多臂老虎机”)的场景。每个老虎机(“臂”)都有其内在的、未知的获奖概率。赌徒的目标是在有限的回合内,通过选择拉动不同的老虎机,来最大化自己的总收益。探索(Exploration)与利用(Exploitation)的权衡。利用(Exploitation):选择当前已知收益最高的老虎机。
2025-06-08 15:57:33
752
原创 从代码学习深度强化学习 - 初探强化学习 PyTorch版
本文将带你初步了解强化学习 (Reinforcement Learning, RL)的基本概念,并通过PyTorch实现一些简单的强化学习算法。强化学习是一种让智能体 (agent) 通过与环境 (environment) 的交互来学习最优行为策略的机器学习方法。本文将结合理论介绍与代码实践,帮助你入门这个激动人心的领域。强化学习的核心思想是让智能体在环境中执行动作,并根据环境的反馈(奖励或惩罚)来调整其策略,最终目标是最大化累积奖励。这种学习方式与人类和动物通过试错来学习非常相似。
2025-06-07 21:04:10
1148
原创 从代码学习数学优化算法 - 拉格朗日松弛 Python版
在运筹学和组合优化的世界里,我们经常遇到一些“棘手”的问题,这些问题因为其内在的组合复杂性(例如整数变量、非线性约束等)而难以直接求解。拉格朗日松弛(Lagrangian Relaxation)是一种强大的技术,它通过将这些“复杂”约束暂时“松弛”掉,并将其以惩罚项的形式移入目标函数,从而将原问题转化为一个相对容易求解的子问题(拉格朗日松弛子问题)。这个子问题的最优解为原问题提供了一个界限(对于最大化问题是上界,最小化问题是下界)。
2025-05-20 21:12:44
1273
原创 从代码学习深度学习 - 预训练word2vec PyTorch版
词嵌入(Word Embeddings)是自然语言处理(NLP)领域中的基石技术之一。它们将词语从稀疏的、高维的独热编码(one-hot encoding)表示转换为稠密的、低维的向量表示。这些向量能够捕捉词语之间的语义和句法关系,使得相似的词在向量空间中距离更近。Word2Vec是其中一种非常流行且有效的词嵌入算法,由Google的Tomas Mikolov等人在2013年提出。
2025-05-20 20:34:47
1407
原创 从代码学习深度学习 - 用于预训练词嵌入的数据集 PyTorch版
词嵌入(Word Embedding)是将词语映射到低维连续向量空间的技术,它能够捕捉词语间的语义和语法关系。预训练词嵌入模型,如 Word2Vec(包括 Skip-gram 和 CBOW)和 GloVe,已经在自然语言处理 (NLP) 领域取得了巨大成功。这些模型通常在大型语料库上进行训练,学习到的词向量可以作为下游 NLP 任务的优秀特征输入。本文将重点关注如何为预训练词嵌入模型(以 Skip-gram 和负采样为例)准备数据集。
2025-05-19 17:02:29
1142
原创 从代码学习深度学习 - 近似训练 PyTorch版
在自然语言处理(NLP)领域,词嵌入(Word Embeddings)技术如Word2Vec(包括Skip-gram和CBOW模型)已经成为一项基础且强大的工具。它们能够将词语映射到低维稠密向量空间,使得语义相近的词在向量空间中的距离也相近。然而,这些模型在训练过程中,尤其是在计算输出层softmax时,会面临一个巨大的挑战:词汇表通常非常庞大(几十万甚至数百万个词)。对整个词典进行求和并计算梯度,其计算成本是巨大的。为了解决这个问题,研究者们提出了多种近似训练方法,旨在降低计算复杂度,同时保持模型性能。
2025-05-18 09:45:34
766
原创 从代码学习深度学习 - 词嵌入(word2vec)PyTorch版
自然语言处理(NLP)是人工智能领域中一个充满活力和挑战的分支。要让计算机理解和处理人类语言,首要任务之一就是如何表示词汇。传统的独热编码(One-Hot Encoding)虽然简单直观,但在表达词与词之间的语义关系时显得力不从心。为了克服这一局限性,词嵌入(Word Embeddings)技术应运而生,其中 word2vec 是最具里程碑意义的模型之一。本篇博客将深入探讨 word2vec 的核心思想和两种主要模型:Skip-Gram 和 CBOW(Continuous Bag-of-Words)。
2025-05-17 14:35:32
1331
原创 从代码学习深度学习 - 实战Kaggle比赛:狗的品种识别(ImageNet Dogs)PyTorch版
欢迎来到“从代码学习深度学习”系列!本次我们将通过一个实际的Kaggle竞赛项目——“狗的品种识别”(Dog Breed Identification)来深入学习如何使用PyTorch进行图像分类。这个项目的数据集源自著名的ImageNet,但专注于识别不同品种的狗。与我们之前可能接触过的CIFAR-10等数据集相比,ImageNet中的图像尺寸更大、宽高不一,这为数据预处理和模型选择带来了新的挑战。我们将一步步完成数据获取、整理、图像增广、模型微调、训练、验证以及最终的预测与提交。
2025-05-16 22:10:12
1675
原创 从代码学习深度学习 - 实战 Kaggle 比赛:图像分类 (CIFAR-10 PyTorch版)
欢迎来到我们的深度学习实战系列!在本文中,我们将深入探讨一个经典的图像分类问题——CIFAR-10挑战,并通过一个实际的 Kaggle 比赛流程来学习。我们将从原始图像文件开始,一步步进行数据整理、图像增广、模型构建、训练、评估,并最终生成提交结果。本教程将全程使用 PyTorch 框架,并详细解释每一段代码的功能和背后的原理。在以往的教程中,我们可能更多地依赖深度学习框架的高级API直接获取处理好的张量格式数据集。但在真实的比赛和项目中,我们往往需要从更原始的数据形态(如.jpg.png。
2025-05-15 20:22:33
989
原创 从代码学习深度学习 - 风格迁移 PyTorch版
大家好!欢迎来到我们的深度学习代码学习系列。今天,我们将深入探讨一个非常有趣且富有创意的计算机视觉领域——风格迁移 (Style Transfer)。想象一下,你能否将梵高的《星夜》的独特笔触和色彩应用到你拍摄的一张城市风景照片上?或者将一幅著名油画的风格赋予你心爱的宠物照片?风格迁移技术正是致力于实现这种艺术融合的魔法。简单来说,风格迁移的目标是生成一张新的图像,这张图像既保留了内容图像 (Content Image)的主要结构和物体,又融入了风格图像 (Style Image)
2025-05-15 09:56:56
1505
原创 从代码学习深度学习 - 全卷积神经网络 PyTorch版
欢迎来到我们的深度学习代码学习系列!今天,我们将深入探讨一种在计算机视觉领域中至关重要的技术——语义分割(Semantic Segmentation),并重点学习其经典实现方法:全卷积网络(Fully Convolutional Network, FCN)。语义分割的目标是为图像中的每一个像素分配一个类别标签,这使得机器能够理解图像内容的精细细节,远超于简单的图像分类或目标检测。在本篇博客中,我们将使用 PyTorch 框架,一步步构建、训练和测试一个 FCN 模型。
2025-05-13 16:29:38
1097
原创 从代码学习深度学习 - 转置卷积 PyTorch版
在卷积神经网络(CNN)的大家族中,我们熟悉的卷积层和汇聚(池化)层通常会降低输入特征图的空间维度(高度和宽度)。然而,在许多应用场景中,例如图像的语义分割(需要对每个像素进行分类)或生成对抗网络(GAN)中的图像生成,我们反而需要增加特征图的空间维度,即进行上采样。转置卷积(Transposed Convolution),有时也被不那么准确地称为反卷积(Deconvolution),正是实现这一目标的关键操作。
2025-05-11 09:48:38
922
原创 从代码学习深度学习 - 语义分割和数据集 PyTorch版
本文介绍了语义分割的基本概念及其在计算机视觉中的重要性,并详细解析了Pascal VOC2012数据集。语义分割旨在为图像中的每个像素分配类别标签,提供更精细的场景理解。文章对比了语义分割、图像分割和实例分割的区别,重点分析了Pascal VOC2012数据集的组成、类别、数据格式及评价指标。此外,提供了辅助工具代码和读取数据集的PyTorch实现,为后续的模型训练奠定了基础。Pascal VOC2012作为经典数据集,广泛应用于算法开发和基准测试。
2025-05-10 20:56:21
1790
原创 从代码学习深度学习 - 区域卷积神经网络(R-CNN)系列 PyTorch版
本博客介绍了目标检测领域中的R-CNN系列模型及其发展历程,重点探讨了R-CNN、Fast R-CNN和兴趣区域汇聚层(RoI Pooling)的核心思想与实现。R-CNN通过选择性搜索生成候选区域,并利用卷积神经网络提取特征进行分类和定位,但其计算效率较低。Fast R-CNN通过共享卷积计算和引入RoI Pooling层,显著提升了检测速度。RoI Pooling层能够将不同形状的候选区域转换为固定大小的特征图,便于后续处理。博客还通过PyTorch代码示例详细展示了RoI Pooling的计算过程,帮
2025-05-09 16:53:17
1617
原创 从代码学习深度学习 - 单发多框检测(SSD)PyTorch版
本文介绍了如何使用深度学习中的单发多框检测(SSD)算法进行目标检测,特别是基于香蕉检测数据集的实现。SSD是一种单阶段目标检测器,以其在速度和精度之间的平衡而著称。文章详细讲解了SSD的核心原理,并通过PyTorch代码展示了模型的构建、训练和预测过程。工具函数部分涵盖了数据读取、处理及加载器的创建,为后续的模型训练和结果可视化提供了支持。通过本文,读者可以深入理解SSD的实现细节,并学会如何在实际项目中应用该算法。
2025-05-08 20:40:55
1204
原创 轻松搞定!Windows 10 Hosts 文件编辑指南 (附避坑技巧)
修改hosts文件是一个非常实用的技巧,无论是为了提高工作效率(屏蔽干扰网站)还是进行 Web 开发调试,都能派上用场。正确路径无扩展名:文件名就是hosts。管理员权限:编辑和保存的必备条件。“所有文件”筛选:打开文件时的关键步骤。希望这篇指南能帮助你顺利掌握 Windows 10hosts文件的编辑方法。如果你有任何疑问或更好的技巧,欢迎在评论区留言分享!
2025-05-07 10:38:40
1052
原创 从代码学习深度学习 - 目标检测前置知识(二) PyTorch版
大家好!欢迎来到“从代码学习深度学习-目标检测前置知识”的第二部分,我们将继续深入探讨目标检测的前置知识。在上一部分,我们已经了解了目标检测的基本概念和锚框的生成。今天,我们将重点关注多尺度目标检测的理念,学习如何生成不同尺度的锚框来适应不同大小的目标物体,并了解如何加载和处理自定义的目标检测数据集。本篇将结合 PyTorch 代码进行实践,帮助大家更直观地理解这些概念。目标检测的一个核心挑战是如何有效地检测图像中大小各异的物体。简单的单尺度锚框生成策略可能难以覆盖所有情况。
2025-05-05 16:25:18
1652
原创 从代码学习深度学习 - 目标检测前置知识(一) PyTorch 版
目标检测是计算机视觉领域中的一个核心问题,它的任务是识别图像中物体的类别并定位它们的位置。近年来,基于深度学习的目标检测算法取得了显著的进展。PyTorch 作为主流的深度学习框架之一,为目标检测的研究和应用提供了强大的支持。本篇博客旨在通过代码实例,介绍目标检测任务中一些重要的前置知识,特别是与边界框 (Bounding Box) 和锚框 (Anchor Box) 相关的概念和常用工具函数。理解这些基础知识对于后续学习和实现更复杂的目标检测模型至关重要。
2025-04-29 09:15:46
710
原创 从代码学习机器学习 - UMAP降维算法 scikit-learn版
在机器学习和数据科学领域,我们经常会遇到高维数据。高维数据虽然包含了丰富的信息,但也带来了“维度灾难”的问题,使得数据分析、可视化和模型训练变得更加困难和低效。降维技术应运而生,它旨在将高维数据转换到低维空间,同时尽可能保留原始数据中的重要信息和结构。主成分分析(PCA)等线性降维方法简单高效,但难以处理非线性结构的数据。流形学习作为非线性降维的重要分支,其中的t-SNE算法在可视化高维数据方面表现出色,但其计算成本较高且难以保留全局结构。
2025-04-28 21:11:34
1302
原创 Claude系列模型-20250426
最智能的模型,适合需要高深推理和多步骤分析的复杂任务,如科研、算法设计等。:响应速度最快,适合日常任务、高效的快速响应场景,如聊天机器人、即时问答等。:智能与速度的平衡,适合中等复杂度的任务,提供足够的推理能力和速度,如中等复杂度的对话系统、文档处理等。:最强大的模型,适合复杂、多维度的任务,特别是在高级战略决策、科学研究等领域表现出色。不同版本的Claude模型,选择时可以根据任务的复杂度和对速度、智能的需求来决定。
2025-04-26 21:03:06
604
原创 GPT系列模型-20250426
模型特点描述适用场景限制GPT-4o全能型,多模态支持多媒体内容生成、跨语言翻译、复杂对话长上下文处理性能瓶颈GPT-4.5高质量文本生成,情感智能强创意写作、内容创作、客户支持复杂推理和多步逻辑任务处理能力有限o3 系列深度推理,链式思维,多工具协同科学研究、数学证明、复杂编程简单任务处理效率较低o4-mini轻量级推理,多模态支持数学计算、编程辅助、图像理解极其复杂任务处理能力有限轻量级版本,性能优于 GPT-3.5 Turbo。
2025-04-26 14:54:19
1044
原创 Gemini 系列模型-20250426
Gemini 系列模型是 Google DeepMind 推出的多模态生成 AI 模型,广泛应用于文本、图像、音频、视频等多种输入输出场景。以下是对您提到的各个模型的功能对比和适用场景分析: (模型名称核心优势适用场景多模态输入输出、快速响应、成本效益智能客服、内容生成、高并发应用可控推理、平衡性能与成本实时信息处理、虚拟助手、成本敏感场景深度推理、复杂任务解决法律合同分析、医学记录解读、复杂编码任务生成详细研究报告、音频概述学术研究、市场分析、内容转化为音频个性化响应、数据透明度。
2025-04-26 13:35:22
705
原创 PyTorch与CUDA的关系
在深度学习开发中,PyTorch与CUDA的配合使用是提升训练效率的关键。然而,很多开发者常常对一个现象感到困惑:为什么系统安装了较新版本的CUDA(如12.2),而PyTorch绑定的是较旧的CUDA版本(如11.8),却仍然能正常调用GPU呢?本文将揭开这个秘密,并提供一些实用的检查和配置方法。通过本文的解析,我们理解了为什么PyTorch绑定的CUDA版本(如11.8)可以在更高版本的CUDA环境(如12.2)中正常工作。这主要归功于NVIDIA驱动的向下兼容性设计。
2025-04-25 20:39:43
1866
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人