Pytorch源码解读——DataLoader模块

torch/utils/data/_utils/dataloader.py

通常在使用pytorch训练神经网络时,DataLoader模块是整个网络训练过程中的基础前提且尤为重要,其主要作用是根据传入接口的参数将训练集分为若干个大小为batch size的batch以及其他一些细节上的操作。一个典型的数据加载以及batch训练过程如下:(其中的args后面会详细解释)

loader = torch.utils.data.DataLoader(args)
for data, label in loader:
    training

这次主要解读DataLoader模块的源码(Pytorch版本为1.8.0),在解读源码之前首先需要明确好几个概念。

iterable和iterator的区别

两者从字面翻译层面来看分别为可迭代和迭代器的意思。这两者概念很相近,然而在底层实现上面有些区别。

iterable: 表示某个对象是可迭代的,底层只实现了__iter__方法
iterator: 表示某个对象是迭代器,底层不仅实现了__iter__,同时还实现了__next__方法

举个例子:python语言中的list、dict、str都是可迭代的,即可以使用for循环。而对于迭代器,不仅可以使用for循环来实现遍历,还可以通过next()函数来获取下一个元素。可以通过iter()函数来将一个可迭代对象转换为一个迭代器。DataLoader是可迭代的,不是迭代器。

#先获取iterator对象
it = iter([1,2,3,4,5])
while True:
    try:
        #获取下一个值
        x 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值