CUDA中的原子操作

CUDA中的原子操作

原子函数对驻留在全局或共享内存中的一个 32 位或 64 位字执行读-修改-写原子操作。 例如,atomicAdd() 在全局或共享内存中的某个地址读取一个字,向其中加一个数字,然后将结果写回同一地址。 该操作是原子的,因为它保证在不受其他线程干扰的情况下执行。 换句话说,在操作完成之前,没有其他线程可以访问该地址。 原子函数不充当内存栅栏,也不意味着内存操作的同步或排序约束(有关内存栅栏的更多详细信息,请参阅内存栅栏函数)。 原子函数只能在设备函数中使用。

原子函数仅相对于特定集合的线程执行的其他操作是原子的:

  • 系统范围的原子:当前程序中所有线程的原子操作,包括系统中的其他 CPU 和 GPU。 这些以 _system 为后缀,例如 atomicAdd_system。
  • 设备范围的原子:当前程序中所有 CUDA 线程的原子操作,在与当前线程相同的计算设备中执行。 这些没有后缀,只是以操作命名,例如 atomicAdd。
  • Block-wide atomics:当前程序中所有 CUDA 线程的原子操作,在与当前线程相同的线程块中执行。 这些以 _block 为后缀,例如 atomicAdd_block。

在以下示例中,CPU 和 GPU 都以原子方式更新地址 addr 处的整数值

__global__ void mykernel(int *addr) {
  atomicAdd_system(addr, 10);       // only available on devices with compute capability 6.x
}

void foo() {
  int *addr;
  cudaMallocManaged(&addr, 4);
  *addr = 0;

   mykernel<<<...>>>(addr);
   __sync_fetch_and_add(addr, 10);  // CPU atomic operation
}

请注意,任何原子操作都可以基于 atomicCAS()(Compare And Swap)来实现。 例如,用于双精度浮点数的 atomicAdd() 在计算能力低于 6.0 的设备上不可用,但可以按如下方式实现:

#if __CUDA_ARCH__ < 600
__device__ double atomicAdd(double* address, double val)
{
    unsigned long long int* address_as_ull =
                              (unsigned long long int*)address;
    unsigned long long int old = *address_as_ull, assumed;

    do {
        assumed = old;
        old = atomicCAS(address_as_ull, assumed,
                        __double_as_longlong(val +
                               __longlong_as_double(assumed)));

    // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
    } while (assumed != old);

    return __longlong_as_double(old);
}
#endif

以下设备范围的原子 API 有系统范围和块范围的变体,但以下情况除外:

  • 计算能力低于 6.0 的设备只支持设备范围的原子操作,
  • 计算能力低于 7.2 的 Tegra 设备不支持系统范围的原子操作。

1. Arithmetic Functions

1.1. atomicAdd()

int atomicAdd(int* address, int val);
unsigned int atomicAdd(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicAdd(unsigned long long int* address,
                                 unsigned long long int val);
float atomicAdd(float* address, float val);
double atomicAdd(double* address, double val);
__half2 atomicAdd(__half2 *address, __half2 val);
__half atomicAdd(__half *address, __half val);
__nv_bfloat162 atomicAdd(__nv_bfloat162 *address, __nv_bfloat162 val);
__nv_bfloat16 atomicAdd(__nv_bfloat16 *address, __nv_bfloat16 val);

读取位于全局或共享内存中地址 address 的 16 位、32 位或 64 位字 old,计算 (old + val),并将结果存储回同一地址的内存中。这三个操作在一个原子事务中执行。该函数返回old。
atomicAdd() 的 32 位浮点版本仅受计算能力 2.x 及更高版本的设备支持。
atomicAdd() 的 64 位浮点版本仅受计算能力 6.x 及更高版本的设备支持。
atomicAdd() 的 32 位 __half2 浮点版本仅受计算能力 6.x 及更高版本的设备支持。 __half2 或 __nv_bfloat162 加法操作的原子性分别保证两个 __half 或 __nv_bfloat16 元素中的每一个;不保证整个 __half2 或 __nv_bfloat162 作为单个 32 位访问是原子的。
atomicAdd() 的 16 位 __half 浮点版本仅受计算能力 7.x 及更高版本的设备支持。
atomicAdd() 的 16 位 __nv_bfloat16 浮点版本仅受计算能力 8.x 及更高版本的设备支持

1.2. atomicSub()

int atomicSub(int* address, int val);
unsigned int atomicSub(unsigned int* address,
                       unsigned int val);

读取位于全局或共享内存中地址address的 32 位字 old,计算 (old - val),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old。

1.3. atomicExch()

int atomicExch(int* address, int val);
unsigned int atomicExch(unsigned int* address,
                        unsigned int val);
unsigned long long int atomicExch(unsigned long long int* address,
                                  unsigned long long int val);
float atomicExch(float* address, float val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old 并将 val 存储回同一地址的内存中。 这两个操作在一个原子事务中执行。 该函数返回old。

1.4. atomicMin()

int atomicMin(int* address, int val);
unsigned int atomicMin(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicMin(unsigned long long int* address,
                                 unsigned long long int val);
long long int atomicMin(long long int* address,
                                long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 old 和 val 的最小值,并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old。
atomicMin() 的 64 位版本仅受计算能力 3.5 及更高版本的设备支持

1.5. atomicMax()

int atomicMax(int* address, int val);
unsigned int atomicMax(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicMax(unsigned long long int* address,
                                 unsigned long long int val);
long long int atomicMax(long long int* address,
                                 long long int val);

1.7. atomicDec()

unsigned int atomicDec(unsigned int* address,
                       unsigned int val);

读取位于全局或共享内存中地址address的 32 位字 old,计算 (((old == 0) || (old > val)) ? val : (old-1) ),并将结果存储回同一个地址的内存。 这三个操作在一个原子事务中执行。 该函数返回old。

1.8. atomicCAS()

int atomicCAS(int* address, int compare, int val);
unsigned int atomicCAS(unsigned int* address,
                       unsigned int compare,
                       unsigned int val);
unsigned long long int atomicCAS(unsigned long long int* address,
                                 unsigned long long int compare,
                                 unsigned long long int val);
unsigned short int atomicCAS(unsigned short int *address, 
                             unsigned short int compare, 
                             unsigned short int val);

2. Bitwise Functions

2.1. atomicAnd()

int atomicAnd(int* address, int val);
unsigned int atomicAnd(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicAnd(unsigned long long int* address,
                                 unsigned long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 (old & val),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old。

2.2. atomicOr()

int atomicOr(int* address, int val);
unsigned int atomicOr(unsigned int* address,
                      unsigned int val);
unsigned long long int atomicOr(unsigned long long int* address,
                                unsigned long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 (old | val),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old。

atomicOr() 的 64 位版本仅受计算能力 3.5 及更高版本的设备支持

2.3. atomicXor()

int atomicXor(int* address, int val);
unsigned int atomicXor(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicXor(unsigned long long int* address,
                                 unsigned long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 (old ^ val),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old。

atomicXor() 的 64 位版本仅受计算能力 3.5 及更高版本的设备支持

CUDA原子操作和规约是在CUDA编程中常用的技术。原子操作是一种特殊的操作,可以确保多个线程同时访问共享内存时的数据一致性。CUDA提供了多种原子操作函数,如原子加法函数,可以在并行计算中实现线程间的同步和数据的安全更新。\[3\] 规约是一种常见的并行计算技术,用于将一个数组中的元素通过某种操作进行合并,得到一个最终的结果。在CUDA中,规约操作可以用于求和、求最大值、求最小值等。CUDA提供了多种规约算法,如交叉配对规约、交错配对规约、处理两个block数据规约、循环展开等。这些算法可以根据具体的需求选择使用。\[1\] 在CUDA编程中,使用原子操作和规约可以提高并行计算的效率和准确性。然而,需要注意的是,在进行规约操作时,必须确保每个步骤的所有线程是同步的,也就是说,所有线程计算完成之后再进入下一步骤的计算,否则会导致结果错误。\[2\]因此,在编写CUDA程序时,需要仔细考虑线程同步的问题,以确保正确的结果。 #### 引用[.reference_title] - *1* [CUDA----规约](https://blog.csdn.net/UCAS_HMM/article/details/126543251)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [CUDA加速——基于规约思想的数组元素求和](https://blog.csdn.net/shandianfengfan/article/details/120407846)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [CUDA学习(十一):原子操作实现向量内积](https://blog.csdn.net/hjxu2016/article/details/109816989)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值