不会不会。。
学习中,先记下来
关于莫比乌斯反演公式:
题意:
关于 d(i j) 的结论:
至于为什么,推荐大佬博客
-> https://blog.csdn.net/ab_ever/article/details/76737617
所求的Ans公式
证明过程:
大佬博客。。
https://www.cnblogs.com/peng-ym/p/8667321.html
代码:
#include<bits/stdc++.h>
using namespace std;
const int INF=INT_MAX;
const long long LLINF=LONG_MAX;
const int mod=998244353;
const int xmax=1e5+7;
typedef long long ll;
ll mu[xmax];
ll prime[xmax];
ll sum[xmax];
int cot=0,k=0;
bool vis[xmax];
void get_mobius() //线性筛打出一部分莫比乌斯函数
{
memset(vis,false,sizeof(vis));
mu[1]=1;
for(int i=2;i<=xmax;i++)
{
if(!vis[i]){
prime[++cot]=i;
mu[i]=-1;
}
for(int j=1;j<=cot&&i*prime[j]<=xmax;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==0){mu[i*prime[j]]==0;break;}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=xmax;i++)
mu[i]+=mu[i-1];
for(int i=1;i<=xmax;i++) //分块预处理出公式后面两部分的和
{
for(int j=1;j<=i;j=k+1)
{
k=i/(i/j);
sum[i]+=(k-j+1)*(i/j);
}
}
}
ll solve(int n,int m){ //公式求解过程
int top=min(n,m);
ll ans=0;
for(int i=1;i<=top;i=k+1)
{
k=min(n/(n/i),m/(m/i));
ans+=sum[n/i]*sum[m/i]*(mu[k]-mu[i-1]);
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
get_mobius();
int t;
cin>>t;
while(t--)
{
int n,m;
cin>>n>>m;
ll ans=solve(n,m);
cout<<ans<<endl;
}
return 0;
}