为什么要用二分查找算法,有什么好处?

首先了解下二分查找算法的基本信息:

二分查找算法是一种高效的查找算法,它适用于以下业务场景:

  1. 有序数据集的查找

    • 当数据集已经排序,且需要频繁查找特定元素时,二分查找可以快速定位元素位置。
  2. 数据库索引

    • 数据库索引通常使用B树或B+树,这些树结构的查找操作类似于二分查找,可以快速定位数据行。
  3. 有序数组或列表的查找

    • 在有序数组或列表中查找特定值时,二分查找可以减少查找次数,提高查找效率。
  4. 搜索算法的优化

    • 在实现搜索算法时,如线性搜索的优化,可以使用二分查找减少不必要的比较。
  5. 动态排序问题

    • 在动态排序问题中,如插入新元素后保持数组有序,可以使用二分查找快速定位插入位置。
  6. 均衡分割问题

    • 需要将一个有序集合分割成两个相等或几乎相等的部分时,可以使用二分查找找到分割点。
  7. 查找最大或最小值

    • 在有序数组中查找最大值或最小值的变种问题,如查找第k大或第k小的元素。
  8. 算法竞赛和面试

    • 许多算法竞赛和编程面试题目中会涉及到二分查找的问题,因为它考察了候选人对算法效率和实现的理解。
  9. 信号处理

    • 在信号处理中,二分查找可以用来快速定位信号的特定特征。
  10. 游戏开发

    • 在游戏中,二分查找可以用来快速检索游戏元素或状态,如在有序的技能树中查找特定的技能。
  11. 物流和供应链管理

    • 在物流和供应链管理中,二分查找可以用来优化库存管理和货物分配。
  12. 金融分析

    • 在金融分析中,二分查找可以用来快速定位历史数据中的特定交易记录。

二分查找算法的关键在于数据必须是有序的,这样才能通过比较中间元素与目标值来缩小搜索范围。如果数据未排序,那么使用二分查找之前需要先进行排序,这会增加额外的时间成本。在实际应用中,二分查找通常用于提高查找效率,减少不必要的比较和计算。

接下来根据一个例子来分析下:

	public static void handleList(List<RoleContent> roleContents) {
	int maxLength = 10000;
    if (CollectionUtils.isEmpty(roleContents)) {
        return;
    }
    int len = roleContents.size();
    int left = 0;
    int right = (len - 1) / 2;

    while (left < right) {
        int mid = (left + right) / 2;
        int count = calculateLength(roleContents.subList(mid * 2, len));
        if (count <= maxLength) {
            right = mid;
        } else {
            left = mid + 1;
        }
    }
    roleContents.subList(0, left * 2).clear();
}

以下是二分查找算法如何在这个场景中工作的步骤:

  1. 初始化边界:设置两个指针,leftright,分别指向列表的开始和结束位置。left 初始化为 0,right 初始化为列表长度的一半(向下取整)。

  2. 二分查找循环:在 left 小于 right 的情况下,执行循环。

  3. 计算中间值:计算中间索引 mid,它是 leftright 的平均值。

  4. 序列化并检查长度:序列化从 mid * 2 到列表末尾的子列表,并计算序列化后的字符串长度。

  5. 调整边界

    • 如果序列化后的字符串长度小于或等于最大允许长度(阈值),则将 right 设置为 mid,因为这意味着我们可以保留更多的元素。
    • 如果序列化后的字符串长度超过了最大允许长度,说明需要保留更少的元素,因此将 left 设置为 mid + 1
  6. 循环结束:当 leftright 相遇时,循环结束,此时 left 指向的索引就是我们需要保留的元素的边界。

  7. 清除超出范围的元素:清除从索引 0 到 left * 2 的元素,因为这些元素的序列化长度超过了阈值。

这种方法确保了在不超过阈值的前提下,尽可能多地保留列表中的元素。二分查找在这里的作用是快速定位到序列化后长度刚好不超过阈值的最大元素集合,而不是直接减少列表长度。通过这种方式,算法避免了线性搜索中的重复序列化和比较,从而提高了效率。

请注意,这种方法假设序列化操作是相对昂贵的,因此我们尽量减少序列化的次数,只在必要时(即在二分查找的每一步)进行序列化和长度计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值