[AcWing] 1016. 最大上升子序列和(C++实现)最长上升子序列模型

本文介绍了如何使用动态规划解决最大上升子序列和的问题,这是最长上升子序列问题的一个变种。通过遍历序列,以每个数为终点更新最大和,并保存每个位置的最大子序列和,最终找到最大值。代码中展示了具体的C++实现过程,适用于理解动态规划在解决此类问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 题目

在这里插入图片描述
在这里插入图片描述

2. 读题(需要重点注意的东西)

读题:
求出最大上升子序列的最大和
注意,单独一个数也是一个最大上升子序列,如比如序列 (100,1,2,3) 的最大上升子序列和为 100 ,而最长上升子序列为 (1,2,3)

思路:
基于[AcWing] 895. 最长上升子序列(C++实现)线性dp例题,将集合的属性从Num更改为Max即可

3. 解法

---------------------------------------------------解法---------------------------------------------------

#include<iostream>
using namespace std;

const int N = 1010;
int f[N];
int a[N];
int n;

int main(){
    cin >> n;
    for(int i = 1;i <= n;i++) cin >> a[i];
    
    int res = 0;
    for(int i = 1; i <= n;i++){
        f[i] = a[i]; // 将集合的属性更新为max
        for(int j = 1;j <= i;j++)
            if(a[j] < a[i]) f[i] = max(f[i],f[j]+a[i]); // 将集合的属性更新为max
        res = max(res,f[i]);
    }
    cout << res ;
    return 0;
}

可能存在的问题

4. 可能有帮助的前置习题

5. 所用到的数据结构与算法思想

  • 动态规划
  • 最长上升子序列问题

6. 总结

最长上升子序列模型,可以发展为不同的最长上升子序列题目

最长上升子序列模型的特征:
1. 以每个点为终点都要判断一遍
2. 路径为一条上升子序列(或下降子序列)
3. 要求的数列会呈如下分布:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cloudeeeee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值