寻找两个正序数组的中位数

寻找两个正序数组的中位数

题目

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。

进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?

  • 示例 1:

    输入:nums1 = [1,3], nums2 = [2]
    输出:2.00000
    解释:合并数组 = [1,2,3] ,中位数 2
    
  • 示例 2:

    输入:nums1 = [1,2], nums2 = [3,4]
    输出:2.50000
    解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
    
  • 示例 3:

    输入:nums1 = [0,0], nums2 = [0,0]
    输出:0.00000
    
  • 示例 4:

    输入:nums1 = [], nums2 = [1]
    输出:1.00000
    
  • 示例 5:

    输入:nums1 = [2], nums2 = []
    输出:2.00000
    
  • 提示:

    nums1.length == m
    nums2.length == n
    0 <= m <= 1000
    0 <= n <= 1000
    1 <= m + n <= 2000
    -106 <= nums1[i], nums2[i] <= 106

  • 题目来源

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解答

思路1:合并两个数组排序后找中位数,判断合并后数组是奇数还是偶数,然后直接求得中位数。

  • 代码
   double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
   	double midnum=0.00000;
   	if(nums1.size()+nums2.size()<=0) return midnum;
   	for(int i=0;i<nums2.size();i++){
   		nums1.push_back(nums2[i]);
   	}
   	sort(nums1.begin(),nums1.end());
   	if(nums1.size()%2==0){
   		midnum+=(nums1[(nums1.size()-1)/2]+nums1[(nums1.size()+1)/2]);
   		midnum/=2.0;
   	}else{
   		midnum+=(nums1[(nums1.size()-1)/2]);
   	}
   	return midnum;
   }
  • 结果

    简单方法的结果

  • 思考

    看到题目后第一反应就是合并数组排序,求中位数;后面看了一小时的讨论和分享,发现自己太年轻了。写题目时,看到进阶部分(这才是hard的部分),就自作聪明用了快排sort,时间复杂度就已经O( l o g ( N ) log(N) log(N))了,跟别说前面还用push_back合并到一个数组中,时间虽然没有到O(N)地步,但也是超出O( l o g ( N ) log(N) log(N))一大截了。

思路2:就是采用二分法,对两个数组不断切割,最后分类讨论;我就不赘述了,下面有链接(含代码和解题思路)。(之所以推荐这个,是写的很好,评论说比官方的还优化了)

总结:这道题目,简单的写法是很简单的,但是如果要按进阶部分来写那才真的算得上hard(毕竟刷过几百题的人也不一定写的对hard题),如果按hard部分来写,对于掌握二分法真的有很大帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值