tensorflow版本Faster R-CNN环境搭建和运行(代码、数据、模型齐全)

本文记录了在Ubuntu系统中,使用Anaconda搭建Tensorflow 1.8版本环境,实现Faster R-CNN物体检测模型的过程。包括环境配置、依赖安装、代码修改和模型运行,解决了一系列坑点,如CondaHTTPError、libnvinfer.so.6缺失等。最终成功运行并展示了结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在做物体检测,想在自己电脑上跑一下Faster RCNN,从搭建环境到改代码再到出结果,过程真的踩过太多太多的坑了,要哭惹~~~
看多了Error,都快忘记Successful长啥样了…还好我没放弃,今天终于跑通了,从网上找了几张图片demo了一下。

下面从头到尾顺一下过程,致敬这些天踩过的坑。

1、环境搭建

首先说一下Faster rcnn有cpu和gpu两种版本,如果你没有gpu服务器或者只是想在自己电脑上复现一下代码那就用cpu版本。可以在windows和linux两种系统里运行。
一开始我是在window10系统里跑程序,环境代码都改好了,但最后编译总是出问题,于是转战虚拟机Ubuntu系统。

2、安装

1.关于虚拟机和Ubuntu系统的安装可以参考这个链接,博主写的挺详细的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安萌萌萌萌萌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值