微服务18_分布式事务02:Seatda:四种模式XA、AT、TCC、SAGA
XA和AT都能实现一致性和隔离性:
- XA是强一致性
- AT是最终一致性。
- XA是第一阶段不提交,基于事务本身特性完成隔离
- AT是加了全局锁,锁定资源去隔离事务。
XA 和AT本身都是加了锁来实现的,但是加了锁一定有性能的损耗
一、XA模式
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
两个阶段:
第一阶段:
事务协调者 会向事务参与者RM,发送准备请求【RM可以准备去执行了,也就是说各个数据库去执行各自的业务】。执行业务后,不要提交。1.2就绪:而是要把事务停留,把执行的结果告诉事务协调者。
1.2:如果某一个事务失败了。该事务肯定执行不成功。
第二阶段:
如果都业务都成功了,那么事务协调者发送给RM说“你们都可以提交了”。
2.2:进行提交事务。
2.2:如果失败了:那么其他事务进行回滚
1、seata的XA模式
seata的XA模式做了一些调整:
XA模式的优点是什么?
• 事务的强一致性,满足ACID原则。
• 常用数据库都支持,实现简单,并且没有代码侵入
XA模式的缺点是什么?
• 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
• 依赖关系型数据库实现事务。比如某些数据库不支持事务,就不可以了。
2、具体操作:
实现XA模式
Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:
- 修改application.yml文件(每个参与事务的微服务),开启XA模式:
什么是数据源代理:把DataSource形成代理,将来发起的业务SQL,都会被seata的RM进行拦截下来,内部调用数据库接口,从而实现XA模式
seata:
data-source-proxy-mode: XA # 开启数据源代理的XA模式
- 给发起全局事务的入口方法添加@GlobalTransactional注解,本例中是OrderServiceImpl中的create方法:
从而seata就会知道,全局事务是从哪里开始的了。用TM代理这个方法。
@Override
@GlobalTransactional
public Long create(Order order) {
// 创建订单
orderMapper.insert(order);
// 扣余额 ...略
// 扣减库存 ...略
return order.getId()
- 重启服务并测试
- 测试:
先进行正常的购买,然后在进行超过库存容量的购买,从而达到模拟事务。
二、AT模式(用的最多)
1、AT模式的原理
AT模式同样是分阶段提交的事务模型,不够弥补了XA模型中资源锁定周期过长的缺陷。
都提交了事务,那么AT模式如何解决回滚问题?
在执行SQL时,RM进行了拦截执行,并且给数据形成快照【undo log】。快照可以快速恢复。
简述AT模式与XA模式最大的区别是什么?
• XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
• XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
• XA模式强一致;AT模式最终一致
2、AT模式的脏写模式
并发时会存在安全问题。
存在:隔离问题。
解决:隔离问题:引入全局锁
全局锁:是由TC(事务协调者)来记录的。 非seata管理的,是可以访问其他字段。
而XA是数据库的锁:任何人都无法来访问此条数据。
更新前的快照:目的是为了做回复的
更新后的快照:判断当前数据做一个对比,如果一样,说明在我第二阶段,没有发生变更。如果不一样,将人工介入。
AT模式的优点:
• 一阶段完成直接提交事务,释放数据库资源,性能比较好
• 利用全局锁实现读写隔离
• 没有代码侵入,框架自动完成回滚和提交
AT模式的缺点:
• 两阶段之间属于软状态,属于最终一致(如果有问题,则利用快照恢复)
• 框架的快照功能会影响性能,但比XA模式要好很多
3、实现AT模式
AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
快照和全局锁都是保存到数据库里面的,因此要创建表:
快照:undo_log。这张表应该放到服务关联的数据库,是因为由RM维护的。
全局锁:lock_table。这张表应该放到TC服务关联的数据库,是因为是由TC维护和创建的。
将模式改为AT模式即可
测试:购买数量大于库存数量,发现购买错误:
而数据库并没有变化。说明AT模式测试成功。
三、TCC模式(性能好、非事务DB可用redis)
1、TCC模式原理
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
• Try:资源的检测和预留; 需要修改某个资源时,先进行预留
• Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
• Cancel:预留资源释放,可以理解为try的反向操作。
都是操作冻结金额。事务之间互不干扰
AT 模式是需要加锁来实现隔离的
TCC不需要隔离,是因为第一阶段:事务1冻结了一部分余额,事务2来了是冻结另外一部分余额。
第二阶段:事务1回滚自己那一份金额,事务2回滚自己金额。两者互不干扰
总结
TCC模式的每个阶段是做什么的?
- try:资源检测和预留
- Confirm:业务执行和提交
- Cancel:预留资源和释放
TCC的优点是什么呢?
- 一阶段完成以后,直接提交事务,释放数据库资源,性能好
- 相比AT模型,无需生成快照,无需使用全局锁,性能最好
- 不依赖数据库事务,而是依赖补偿操作,可以用于非事务性数据库(Redis)
TCC缺点是:
- 有代码侵入,需要人为编写try / confirm /cancel接口,
- 软状态,事务最终一致
- 需要考虑Confirm和Cancel的失败情况,做好幂等处理。也就是说做好健壮性代码,比如说:重试、
2、例子:利用TCC实现分布式事务
改造account-service服务,利用TCC实现分布式事务
需求如下:
• 修改account-service,编写try、confirm、cancel逻辑
• try业务:添加冻结金额,扣减可用金额
• confirm业务:删除冻结金额
• cancel业务:删除冻结金额,恢复可用金额
• 保证confirm、cancel接口的幂等性。【拒绝重复调用出现结果不一致】
• 允许空回滚
• 拒绝业务悬挂
为了实现空回滚、防止业务悬挂,以及幂等性要求。我们必须在数据库记录冻结金额的同时,记录当前事务id和执行状态,为此我们设计了一张表:
声明TCC接口
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,语法如下
@LocalTCC
public interface TCCService {
/**
* Try逻辑,@TwoPhaseBusinessAction中的name属性要与当前方法名一致,用于指定Try逻辑对应的方法
*/
@TwoPhaseBusinessAction(name = "prepare", commitMethod = "confirm", rollbackMethod = "cancel")
void prepare(@BusinessActionContextParameter(paramName = "param") String param);
/**
* 二阶段confirm确认方法、可以另命名,但要保证与commitMethod一致
*
* @param context 上下文,可以传递try方法的参数
* @return boolean 执行是否成功
*/
boolean confirm (BusinessActionContext context);
/**
* 二阶段回滚方法,要保证与rollbackMethod一致
*/
boolean cancel (BusinessActionContext context);
}
具体的service业务逻辑
package cn.itcast.account.service;
import io.seata.rm.tcc.api.BusinessActionContext;
import io.seata.rm.tcc.api.BusinessActionContextParameter;
import io.seata.rm.tcc.api.LocalTCC;
import io.seata.rm.tcc.api.TwoPhaseBusinessAction;
@LocalTCC
public interface AccountTCCService {
@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
@BusinessActionContextParameter(paramName = "money")int money);
boolean confirm(BusinessActionContext ctx);
boolean cancel(BusinessActionContext ctx);
}
--------------impl
package cn.itcast.account.service.impl;
import cn.itcast.account.entity.AccountFreeze;
import cn.itcast.account.mapper.AccountFreezeMapper;
import cn.itcast.account.mapper.AccountMapper;
import cn.itcast.account.service.AccountTCCService;
import io.seata.core.context.RootContext;
import io.seata.rm.tcc.api.BusinessActionContext;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {
@Autowired
private AccountMapper accountMapper;
@Autowired
private AccountFreezeMapper freezeMapper;
@Override
@Transactional
public void deduct(String userId, int money) {
// 0.获取事务id
String xid = RootContext.getXID();
// 1.扣减可用余额
accountMapper.deduct(userId, money);
// 2.记录冻结金额,事务状态
AccountFreeze freeze = new AccountFreeze();
freeze.setUserId(userId);
freeze.setFreezeMoney(money);
freeze.setState(AccountFreeze.State.TRY);
freeze.setXid(xid);
freezeMapper.insert(freeze);
}
@Override
public boolean confirm(BusinessActionContext ctx) {
// 1.获取事务id
String xid = ctx.getXid();
// 2.根据id删除冻结记录
int count = freezeMapper.deleteById(xid);
return count == 1;
}
@Override
public boolean cancel(BusinessActionContext ctx) {
// 0.查询冻结记录
String xid = ctx.getXid();
AccountFreeze freeze = freezeMapper.selectById(xid);
// 1.恢复可用余额
accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
// 2.将冻结金额清零,状态改为CANCEL
freeze.setFreezeMoney(0);
freeze.setState(AccountFreeze.State.CANCEL);
int count = freezeMapper.updateById(freeze);
return count == 1;
}
}
四、SAGA模式
Saga模式是SEATA提供的长事务解决方案。也分为两个阶段:
- 一阶段:直接提交本地事务
- 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
没有全局锁、资源预留,所以没有隔离性,可能出现脏写
Saga模式优点:
- 事务参与者可以基于事件驱动实现异步调用,吞吐高
- 一阶段直接提交事务,无锁,性能好
- 不用编写TCC中的三个阶段,实现简单
缺点:
- 软状态持续时间不确定,时效性差
- 没有锁,没有事务隔离,会有脏写
适合跨度比较大的情况:夸银行的业务调用、转账。
用的比较少