持续学习&持续更新中…
守破离
【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【14】缓存与分布式锁
缓存
为了系统性能的提升,我们一般都会将部分数据放入缓存中,加速访问。而 db 承担数据落盘工作(持久化)
哪些数据适合放入缓存?
- 即时性、数据一致性要求不高的
- 访问量大且更新频率不高的数据(读多,写少)
举例:电商类应用,商品分类,商品列表等适合缓存并加一个失效时间(根据数据 更新频率 来定),后台如果发布一个商品,买家需要 5 分钟才能看到新的商品一般还是可以接受的。
data = cache.load(id);//从缓存加载数据
If(data == null){
data = db.load(id);//从数据库加载数据
cache.put(id,data);//保存到 cache 中
}
return data;
注意:在开发中,凡是放入缓存中的数据我们都应该指定过期时间,使其可以在系统即使没 有主动更新数据也能自动触发数据加载进缓存的流程。避免业务崩溃导致的 数据永久不一致 问题。
本地缓存
- 比如将Map或者ehcache作为本地缓存
- 如果项目是单机部署的,不是分布式,也不考虑缓存大小,那么使用本地缓存没有问题
分布式缓存-本地模式在分布式下的问题
- 每个微服务发现自己的缓存中没有上架,都会去查询数据库
- 如果某次请求负载均衡到了第一台机器,并修改了数据,那么1号机器的缓存会被修改,但是2号3号机器的缓存不会修改
分布式缓存
- redis中间件的好处就是可以集群化
- 理论上可以无限扩容redis
- 使用中间件作为缓存就打破了本地缓存的 容量限制
整合 redis 作为缓存
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
spring:
redis:
host: 192.168.56.10
port: 6379
@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest
public class GulimallProductApplicationTests {
@Autowired
StringRedisTemplate stringRedisTemplate;
@Test
public void testStringRedisTemplate(){
//hello world
ValueOperations<String, String> ops = stringRedisTemplate.opsForValue();
//保存
ops.set("hello","world_"+ UUID.randomUUID().toString());
//查询
String hello = ops.get("hello");
System.out.println("之前保存的数据是:"+hello);
}
}
修改业务:
public Map<String, List<Catelog2Vo>> getCatalogJson() {
//给缓存中放json字符串,拿出的json字符串,还用逆转为能用的对象类型;【序列化与反序列化】JSON跨语言,跨平台兼容。
//1、加入缓存逻辑,缓存中存的数据是json字符串。
String catalogJSON = redisTemplate.opsForValue().get(RedisConstant.CATEGORY_KEY);
if (StringUtils.isEmpty(catalogJSON)) {
//2、缓存中没有,查询数据库
System.out.println("缓存不命中....将要查询数据库...");
Map<String, List<Catelog2Vo>> catalogJsonFromDb = getCatalogJsonFromDB();
return catalogJsonFromDb;
}
System.out.println("缓存命中....直接返回....");
//转为我们指定的对象。
Map<String, List<Catelog2Vo>> result = JSON.parseObject(catalogJSON, new TypeReference<Map<String, List<Catelog2Vo>>>() {
});
return result;
}
public Map<String, List<Catelog2Vo>> getCatalogJsonFromDB() {
System.out.println("查询了数据库.....");
Map<String, List<Catelog2Vo>> catgoryData = selectDb();
//查到的数据再放入缓存,将对象转为json放在缓存中
String s = JSON.toJSONString(catgoryData);
redisTemplate.opsForValue().set(RedisConstant.CATEGORY_KEY, s);
// 1天过期
// redisTemplate.opsForValue().set(RedisConstant.CATEGORY_KEY, s, 1, TimeUnit.DAYS);
return catgoryData;
}
JMeter测试出OutOfDirectMemoryError【堆外内存溢出】
- springboot2.0以后默认使用lettuce作为操作redis的客户端。它使用netty进行网络通信。
- lettuce的bug导致netty堆外内存溢出;
- netty如果没有指定堆外内存,默认使用
-Xmx300m
(自己配置的微服务内存),可以通过-Dio.netty.maxDirectMemory
进行设置
解决方案:
- 不能只使用
-Dio.netty.maxDirectMemory
去调大堆外内存。长久的运行后,堆外内存还会溢出 - 升级lettuce客户端。(不推荐)
- 切换使用jedis。
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
<exclusions>
<exclusion>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
</dependency>
高并发读下缓存失效问题
缓存穿透
- 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中,将去查询数据库,但是数 据库也无此记录,我们没有将这次查询的 null 写入缓存,这将导致这个不存在的数据每次 请求都要到存储层去查询,失去了缓存的意义。
- 在流量大时,可能 DB 就挂掉了,要是有人利用不存在的 key 频繁攻击我们的应用,这就是 漏洞。
- 解决: 缓存空结果、并且设置短的过期时间。
缓存雪崩
雪崩:缓存的数据key大面积同时失效
- 缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失 效,请求全部转发到 DB,DB 瞬时压力过重雪崩。
- 解决: 原有的失效时间基础上增加一个随机值,比如 1-5 分钟随机,这样每一个缓存的过期时间的 重复率就会降低,就很难引发集体失效的事件。
缓存击穿
瞄着一个靶子疯狂射击的时候,这个靶子就会被打穿
也叫做热点key
- 对于一些设置了过期时间的 key,如果这些 key 可能会在某些时间点被超高并发地访问, 是一种非常“热点”的数据。
- 这个时候,需要考虑一个问题:如果这个 key 在大量请求同时进来前正好失效,那么所 有对这个 key 的数据查询都落到 db,我们称为缓存击穿。
- 解决: 加锁
总结解决高并发下缓存失效问题
- 空结果缓存:解决缓存穿透
- 设置过期时间(加随机值):解决缓存雪崩
- 加锁:解决缓存击穿
本地锁与分布式锁
分布式下的本地锁
有多少个商品服务,就会有多少把锁,就会访问多少次数据库
IDEA开启多个商品服务:可以多复制几个商品服务交给网关进行压力测试本地锁
本地锁:
public Map<String, List<