【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【14】缓存与分布式锁


持续学习&持续更新中…

守破离


缓存

为了系统性能的提升,我们一般都会将部分数据放入缓存中,加速访问。而 db 承担数据落盘工作(持久化)

哪些数据适合放入缓存?

  • 即时性、数据一致性要求不高的
  • 访问量大且更新频率不高的数据(读多,写少)

举例:电商类应用,商品分类,商品列表等适合缓存并加一个失效时间(根据数据 更新频率 来定),后台如果发布一个商品,买家需要 5 分钟才能看到新的商品一般还是可以接受的。

在这里插入图片描述

data = cache.load(id);//从缓存加载数据 
If(data == null){
   
    
	data = db.load(id);//从数据库加载数据 
	cache.put(id,data);//保存到  cache 中 
} 
return data;

注意:在开发中,凡是放入缓存中的数据我们都应该指定过期时间,使其可以在系统即使没 有主动更新数据也能自动触发数据加载进缓存的流程。避免业务崩溃导致的 数据永久不一致 问题。

本地缓存

在这里插入图片描述

  • 比如将Map或者ehcache作为本地缓存
  • 如果项目是单机部署的,不是分布式,也不考虑缓存大小,那么使用本地缓存没有问题

分布式缓存-本地模式在分布式下的问题

在这里插入图片描述

  • 每个微服务发现自己的缓存中没有上架,都会去查询数据库
  • 如果某次请求负载均衡到了第一台机器,并修改了数据,那么1号机器的缓存会被修改,但是2号3号机器的缓存不会修改

分布式缓存

在这里插入图片描述

  • redis中间件的好处就是可以集群化
  • 理论上可以无限扩容redis
  • 使用中间件作为缓存就打破了本地缓存的 容量限制

整合 redis 作为缓存

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

spring:
  redis:
    host: 192.168.56.10
    port: 6379
@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest
public class GulimallProductApplicationTests {
   
   

    @Autowired
    StringRedisTemplate stringRedisTemplate;

    @Test
    public void testStringRedisTemplate(){
   
   
        //hello   world
        ValueOperations<String, String> ops = stringRedisTemplate.opsForValue();

        //保存
        ops.set("hello","world_"+ UUID.randomUUID().toString());

        //查询
        String hello = ops.get("hello");
        System.out.println("之前保存的数据是:"+hello);
    }
}

修改业务:

    public Map<String, List<Catelog2Vo>> getCatalogJson() {
   
   
        //给缓存中放json字符串,拿出的json字符串,还用逆转为能用的对象类型;【序列化与反序列化】JSON跨语言,跨平台兼容。
        //1、加入缓存逻辑,缓存中存的数据是json字符串。
        String catalogJSON = redisTemplate.opsForValue().get(RedisConstant.CATEGORY_KEY);
        if (StringUtils.isEmpty(catalogJSON)) {
   
   
            //2、缓存中没有,查询数据库
            System.out.println("缓存不命中....将要查询数据库...");
            Map<String, List<Catelog2Vo>> catalogJsonFromDb = getCatalogJsonFromDB();
            return catalogJsonFromDb;
        }

        System.out.println("缓存命中....直接返回....");
        //转为我们指定的对象。
        Map<String, List<Catelog2Vo>> result = JSON.parseObject(catalogJSON, new TypeReference<Map<String, List<Catelog2Vo>>>() {
   
   });
        return result;
    }
    public Map<String, List<Catelog2Vo>> getCatalogJsonFromDB() {
   
   
        System.out.println("查询了数据库.....");
        Map<String, List<Catelog2Vo>> catgoryData = selectDb();
        
        //查到的数据再放入缓存,将对象转为json放在缓存中
        String s = JSON.toJSONString(catgoryData);
        redisTemplate.opsForValue().set(RedisConstant.CATEGORY_KEY, s);
//        1天过期        
//        redisTemplate.opsForValue().set(RedisConstant.CATEGORY_KEY, s, 1, TimeUnit.DAYS);

        return catgoryData;
    }

JMeter测试出OutOfDirectMemoryError【堆外内存溢出】

  • springboot2.0以后默认使用lettuce作为操作redis的客户端。它使用netty进行网络通信。
  • lettuce的bug导致netty堆外内存溢出;
  • netty如果没有指定堆外内存,默认使用-Xmx300m(自己配置的微服务内存),可以通过-Dio.netty.maxDirectMemory进行设置

解决方案:

  • 不能只使用-Dio.netty.maxDirectMemory去调大堆外内存。长久的运行后,堆外内存还会溢出
  • 升级lettuce客户端。(不推荐)
  • 切换使用jedis。
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
            <exclusions>
                <exclusion>
                    <groupId>io.lettuce</groupId>
                    <artifactId>lettuce-core</artifactId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
        </dependency>

高并发读下缓存失效问题

缓存穿透

在这里插入图片描述

  • 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中,将去查询数据库,但是数 据库也无此记录,我们没有将这次查询的 null 写入缓存,这将导致这个不存在的数据每次 请求都要到存储层去查询,失去了缓存的意义。
  • 在流量大时,可能 DB 就挂掉了,要是有人利用不存在的 key 频繁攻击我们的应用,这就是 漏洞。
  • 解决: 缓存空结果、并且设置短的过期时间。

缓存雪崩

雪崩:缓存的数据key大面积同时失效

在这里插入图片描述

  • 缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失 效,请求全部转发到 DB,DB 瞬时压力过重雪崩。
  • 解决: 原有的失效时间基础上增加一个随机值,比如 1-5 分钟随机,这样每一个缓存的过期时间的 重复率就会降低,就很难引发集体失效的事件。

缓存击穿

瞄着一个靶子疯狂射击的时候,这个靶子就会被打穿
也叫做热点key

在这里插入图片描述

  • 对于一些设置了过期时间的 key,如果这些 key 可能会在某些时间点被超高并发地访问, 是一种非常“热点”的数据。
  • 这个时候,需要考虑一个问题:如果这个 key 在大量请求同时进来前正好失效,那么所 有对这个 key 的数据查询都落到 db,我们称为缓存击穿。
  • 解决: 加锁

总结解决高并发下缓存失效问题

  • 空结果缓存:解决缓存穿透
  • 设置过期时间(加随机值):解决缓存雪崩
  • 加锁:解决缓存击穿

本地锁与分布式锁

分布式下的本地锁

有多少个商品服务,就会有多少把锁,就会访问多少次数据库

在这里插入图片描述

IDEA开启多个商品服务:可以多复制几个商品服务交给网关进行压力测试本地锁

在这里插入图片描述

在这里插入图片描述

本地锁:

    public Map<String, List<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值