在用pytorch训练模型时(pytorch1.1及以上版本),通常会在遍历epochs的过程中依次用到optimizer.zero_grad(),loss.backward()和optimizer.step(),scheduler()四个函数,如下所示:
model = MyModel()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size = 100, gamma = 0.1)
for epoch in range(1, epochs):
for i, (inputs, labels) in enumerate(train_loader):
output= model(inputs)
loss = criterion(output, labels)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
总得来说,这四个函数的作用是先将梯度归零(optimizer.zero_grad()),然后反向传播计算得到每个参数的梯度值(loss.backward()),最后通过梯度下降执行一步参数更新(optimizer.step())
我们知道optimizer更新参数空间需要基于反向梯度,因此,当调用optimizer.step()的时候应当是loss.backward()的时候),这也就是经常会碰到,如下情况
loss.backward()