RAG 的核心实现流程
RAG 的典型流程可分为以下几个步骤:
1. 数据准备与向量化(一次性操作)
-
数据分块:将原始文档(如 PDF、网页、知识库等)切分为较小的文本片段,便于后续处理。
-
向量化处理:使用嵌入模型(如 OpenAI 的
text-embedding-ada-002
或 Hugging Face 的sentence-transformers
)将每个文本片段转换为高维向量表示。 -
存储于向量数据库:将生成的向量及其对应的文本片段存储在向量数据库中,如 Milvus、Weaviate、Pinecone 或 FAISS,以支持高效的相似度检索 。
2. 查询处理与检索
-
查询向量化:将用户的自然语言查询转换为向量表示。
-
相似度检索:在向量数据库中查找与查询向量最相似的 Top-K 文本片段,作为相关上下文信息。
3. 上下文增强与提示构建
-
构建增强提示:将检索到的文本片段与用户的原始查询组合,形成包含丰富上下文的提示(Prompt),以提供给语言模型。
4. 响应生成
-
生成回答:将增强提示输入到