什么是检索增强生成 (RAG)?检索增强生成是如何实现的?

RAG 的核心实现流程

RAG 的典型流程可分为以下几个步骤:

1. 数据准备与向量化(一次性操作)
  • 数据分块:将原始文档(如 PDF、网页、知识库等)切分为较小的文本片段,便于后续处理。

  • 向量化处理使用嵌入模型(如 OpenAI 的 text-embedding-ada-002 或 Hugging Face 的 sentence-transformers)将每个文本片段转换为高维向量表示

  • 存储于向量数据库将生成的向量及其对应的文本片段存储在向量数据库中,如 Milvus、Weaviate、Pinecone 或 FAISS,以支持高效的相似度检索

2. 查询处理与检索
  • 查询向量化:将用户的自然语言查询转换为向量表示。

  • 相似度检索:在向量数据库中查找与查询向量最相似的 Top-K 文本片段,作为相关上下文信息

3. 上下文增强与提示构建
  • 构建增强提示:将检索到的文本片段与用户的原始查询组合,形成包含丰富上下文的提示(Prompt),以提供给语言模型

4. 响应生成
  • 生成回答:将增强提示输入到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热爱生活的五柒

谢谢你的打赏,人好心善的朋友!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值