特征筛选(嵌入型Embeded)

特征选择通过监督模型评估特征重要性,如L1正则化的稀疏特性及树类算法的特征影响度。L1正则化倾向于产生稀疏参数,而树类算法如GBDT利用特征对损失下降的贡献排序。sklearn.feature_selection.SelectFromModel工具简化了这一过程,允许设定阈值和最大特征数进行筛选。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于模型的特征选择使用一个监督机器学习模型来判断每个特征的重要性,并且仅保留最重要的特征。用于特征选择的监督模型不需要与用于最终监督建模的模型相同。特征选择模型需要为每个特征提供某种重要性度量,以便用这个度量对特征进行排序。

可以利用L1正则化的稀疏功能,以及树类算法可以计算特征重要性的功能。

L1正则化

相比L2正则化,L1正则化更趋近于使参数为0,而L2则会是参数趋向于零;所以L1具有稀疏参数的功能。

树类算法

通常采用RM,GBDT算法,利用每一层的特征对结果损失下降的总和排序,决出特征重要性排名。

sklearn.feature_selection.SelectFromModel

采用该函数可以直接帮我们实现特征筛选的功能

SelectFromModel(estimator, *, threshold=None, prefit=False, norm_order
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值